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Abstract. We propose a novel measure of goodness of fit for stochastic choice mod-

els: the maximal fraction of data that can be reconciled with the model. We do so by

separating the data into two parts: one that is generated by the best specification of

the model and another which represents residual behavior. We claim that the three

elements involved in a separation are instrumental in understanding the data. We

show how to apply our approach to any model of stochastic choice. We then study

the case of four well-known models, each capturing a different notion of randomness.

We illustrate our results with an experimental dataset.

Keywords: Goodness of fit; Stochastic Choice; Residual Behavior.

JEL classification numbers: D00.

1. Introduction

Choice data arising from either individual or population behavior often have a prob-

abilistic nature. Today, there is renewed interest in obtaining a better modeling of

stochastic behavior, and the literature offers a battery of models incorporating ran-

domness in various ways.1 In this paper we discuss a novel goodness of fit measure

for stochastic choice models. The measure corresponds to the (tight) upper bound in

the fraction of data that can be reconciled with the model. This approach requires to
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separate the data into two parts: one which is generated by a particular specification

of the model and is to be maximized, and another containing the remainder, which

consists of unstructured behavior and is to be minimized. We refer to the first part as

the predicted randomness given by the model and to the second as residual behavior.

The separation exercise highlights three key elements. First, the maximal fraction

of data explained by the model, which represents our goodness of fit measure. This

measures the ability of the model to explain actual behavior. Second, an optimal spec-

ification of the model. Clearly, when associated with large fractions of data explained,

the identified specification of the model becomes a potentially useful tool in counterfac-

tual scenarios, such as those associated with prediction problems. Third, a description

of residual behavior. This facilitates a better understanding of the relationship between

actual behavior and the choice model, since it endogenously enables the identification

of the menus and choices for which the model fails most dramatically. This information

may be relevant at the time of revising a model.

More formally, given the grand set of alternatives X, SCF denotes the set of all

stochastic choice functions, i.e., all the possible descriptions of the probabilities of

choice of each alternative in each menu in the domain. The aim is to explain data

ρ, that is taken to be a stochastic choice function, in the light of model ∆, that is

defined as a collection of stochastic choice functions. The model ∆ describes all the

possible predictions the analyst considers relevant. For example, it may encompass

all the parametric specifications of the favorite choice model of the analyst, including

those arising from the consideration of measurement error or unobserved heterogeneity.

A triple 〈λ, δ, ε〉, where λ ∈ [0, 1], δ ∈ ∆ and ε ∈ SCF, such that ρ = λδ + (1 − λ)ε

describes a possible separation of data ρ into a fraction λ explained by the instance of

the model δ and a fraction 1 − λ that corresponds to unstructured residual behavior

ε. A separation is maximal if it provides the maximal value of λ. Proposition 1 in

section 3 shows that, for any closed model ∆, maximal separations always exist, and

characterizes their structure. The result shows that maximal separations are identified

throughout a maxmin operation. First, for every instance of the model compute the

minimum ratio, across all the observations, of data to prediction. Then, the solution is

given by the instance of the model that maximizes such ratio. This is a simple method,

applicable to any model, and potentially instrumental in the analysis of particular

models, as it is shown later in the paper.



3

In section 4 we analyze four well-known stochastic choice models that predict ran-

domness in very different ways. In all four cases, we build on Proposition 1 in order

to provide tailored results describing the structure of the maximal separations of the

different models. This exercise facilitates the practical implementation of maximal sep-

arations, and, by elaborating on the structural properties of the respective stochastic

choice model, complements the conceptual understanding of the maximal separation

approach. We start with the paradigmatic model of decision-making in economics: the

deterministic choice model. In this model, the individual always selects the alterna-

tive that maximizes a preference relation, and hence there is no predicted randomness

whatsoever. Thus, when a stochastic choice function is analyzed from the perspective

of the deterministic model, any stochasticity in the data must be regarded as residual

behavior. Given the overwhelming use of this model, it seems advisable to make it

the first in our analysis of particular cases. Proposition 2 provides a simple recursive

method over the sizes of the menus used to compute the maximal separations of the

deterministic model.

We then turn to the study of three stochastic choice models. We start with the

tremble model, where randomness represents the possibility of making mistakes at the

time of choosing. In the tremble model, with probability (1 − γ) the decision-maker

maximizes a preference relation, and with probability γ randomizes over all the avail-

able alternatives. Proposition 3 describes how to extend the technique developed for

the deterministic model to this case. We then analyze the model of Luce (1959), which

is also known as the logistic model. The Luce model incorporates randomness in the

utility evaluation of the alternatives. Proposition 4 gives simplicity to the analysis of

the Luce model by showing that the observations giving the minimum ratio of data to

predictions in a maximal separation obey a particular structure. Finally, we study a

class of random utility models incorporating randomness in the determination of the or-

dinal preference that governs choice. In particular, we study the class of single-crossing

random utility models (Apesteguia, Ballester and Lu, 2017), that has the advantage

of providing tractability, while also being applicable to a variety of economic settings.

Proposition 5 gives the corresponding maximal separations, following a recursive argu-

ment over the collections of preferences in the support of the random utility model.

Section 5 reports on an empirical application of our approach. We use a previously-

existing experimental dataset comprising 87 individuals making choices from binary

comparisons of lotteries. We take the aggregate data of the entire population and
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illustrate the practicality of our results, obtaining the maximal separation results for

all the models discussed in the paper. We first show that the maximal fraction of the

data explained by the deterministic model, its goodness of fit, is 0.51, and that the

preference relation identified in the maximal separation basically ranks the lotteries

from least to most risky. The tremble model identifies exactly the same preference

relation, together with a tremble probability of 0.51, which increases the fraction of

data explained to 0.68. The Luce model also increases the fraction of data explained

to 0.74, and identifies a utility function over lotteries that is ordinally close to the

preference ranking of the deterministic and tremble models. Finally, we implement the

single-crossing random utility model assuming the utility functions given by CRRA

expected utility. We obtain that the fraction of data explained increases further to

0.78, with the largest mass being assigned to a preference exhibiting high levels of risk

aversion.

Section 6 contrasts the maximal separation approach with other goodness of fit mea-

sures, like maximum likelihood and least squares. We argue that maximal separation,

by focusing on the largest deviations from the data, is particularly accurate in the

prediction involving low observed choice frequencies. We then use the experimental

dataset to empirically illustrate this point, confirming that there are important com-

plementarities between the maximal separation technique and the standard ones for

gaining a deeper understanding of the data.

Section 7 concludes by discussing three aspects in the maximal separations approach.

Firstly, we briefly analyze the model selection issue by discussing the case of an ana-

lyst wishing to compare the maximal fractions of data explained by different models.

Secondly, we comment on the advantages and drawbacks of imposing further techni-

cal structure on the stochastic choice models. Finally, we consider the case when the

notion of maximal separation is slightly modified by restricting the space of possible

residual behaviors that can be combined with the randomness predicted by a model,

and we conclude by suggesting some potentially fruitful ways of interpreting residual

behavior.

2. Related literature

Rudas, Clogg and Lindsay (1994) developed a novel proposal in Statistics, present-

ing what is now known as the mixture index of fit for contingency tables. Given a
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multivariate frequency distribution, Rudas, Clogg and Lindsay (1994) suggest measur-

ing the goodness of fit of a given model using a two-point mixture, by calculating the

largest fraction of the population for which a distribution belonging to the model fits

the data, while leaving the complementary fraction as an unstructured distribution.

Rudas (1999) extends the mixture index to continuous probability distributions, and

relates the optimal solution to minimax estimation.2 The maximal separation tech-

nique imports the same logic for the study of stochastic choice functions. The latter

differ from contingency tables in that they involve collections of interrelated probabil-

ity distributions, one for each available menu of alternatives, where the interrelation is

choice model dependent. Interestingly, Böckenholt (2006) claims that new methodolo-

gies are needed to understand the systematic behavioral violations of random utility

models, and, without elaborating, suggests the mixture index of fit as one such po-

tentially useful methodology. In this paper, we undertake this challenge by extending

the methodology, not only to random utility models, but to every possible stochastic

choice model, and then incorporate these ideas into Decision Theory and Economics.

In Economics, Afriat (1973) was the first in a long history of proposals for indices

that measure the consistency of revealed preferences with the deterministic, rational

model of choice. In a consumer setting, Afriat’s suggestion was to compute the min-

imal amount of monetary adjustment required to reconcile all observed choices with

the maximization of some preference; an idea later generalized by Varian (1990). Al-

ternative suggestions by Houtman and Maks (1985), and more recently by Dean and

Martin (2016), are to compute the maximal number of data points that are consis-

tent with the maximization of some preference. Apesteguia and Ballester (2015) and

Halevy, Persitz, and Zrill (2018) suggest consistency measures that compute the mini-

mal welfare loss of inconsistent behavior with respect to some preference. Relevantly,

Apesteguia and Ballester (2015) show, by means of an axiomatic approach, that all

these measures have a common structure; they search for a preference that minimizes

a given loss function, ultimately providing both a goodness of fit measure and the best

possible description of behavior.3 Since the maximal separation approach also provides

2The statistical literature offers a number of applications of these ideas, and develops algorithms

for the implementation of the mixture index to contingency tables (see, e.g., Dayton, 2003; Liu and

Lindsay, 2009).
3Other influential approaches provide only a goodness of fit measure; these include Swofford and

Whitney (1987), Famulari (1995) and Echenique, Lee, and Shum (2011), whose proposal is to focus

on the number of violations of a rationality axiom, e.g. WARP, contained in the data.
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a goodness of fit measure and the best description of behavior when applied to the

deterministic rational model, it shares the spirit of all these consistency measures. In

Appendix D, we formally compare the maximal separation approach to the existing

measures and show that it provides a distinctive, novel measure of rationality. Impor-

tantly, note that, while all these measures pertain to the analysis of the deterministic

rational model, the maximal separation approach applies to any possible rational or

non-rational, deterministic or stochastic model of choice.

Recently, Liang (2019) has explored whether the inconsistency part of a choice

dataset can be judged as choice error or as the result of preference heterogeneity.

More concretely, Liang adopts the flexible multiple-preference framework of Kalai, Ru-

binstein and Spiegler (2002), in which the individual can use different preferences in

different menus.4 Liang (2019) envisions inconsistencies as the consequence of two

different mechanisms: (i) preference heterogeneity, represented by a large fraction of

choices being explained by an, ideally, small set of preferences used by the individual

á la Kalai, Rubinstein and Spiegler (2002), and (ii) error, represented by a small frac-

tion of choices being captured by other preferences outside this set of preferences. We

share with Liang (2019) an interest in identifying the part of the data that is due to

error. Our approach differs in two ways: firstly, in that we do not adopt the multiple-

preference framework but rather a methodology that applies to any stochastic choice

model; and, secondly, as discussed above, in that we provide both a goodness of fit

measure and the best description of behavior.

3. Maximal separations

Let X be a non-empty finite set of alternatives. Menus are non-empty subsets of

alternatives and, in order to accommodate the diversity of existing settings, such as

consumer-type domains or laboratory-type domains, we consider a non-empty arbitrary

domain of menus D. Pairs (a,A), with a ∈ A and A ∈ D are called observations, and

denoted by O. A stochastic choice function is a mapping σ : O → [0, 1] which, for

every A ∈ D, satisfies that
∑

a∈A σ(a,A) = 1. We interpret σ(a,A) as the probability

of choosing alternative a in menu A. We denote by SCF the space of all stochastic choice

4Crawford and Pendakur (2012) implement the approach of Kalai, Rubinstein and Spiegler (2002)

using a set of data on milk purchases, finding that five preferences are enough to fully rationalize the

data. Apesteguia and Ballester (2010) study the computational complexity of finding the minimal

number of multiple-preferences that rationalize the data.
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functions. The data are represented by means of a stochastic choice function, that we

denote by ρ and that we assume to be in the interior of SCF.5 Namely, ρ(a,A) > 0

for every (a,A) ∈ O. A model is a non-empty closed subset ∆ of SCF, representing

all the possible stochastic choice functions consistent with the entertained theoretical

model. We emphasize that other than its closure, we make no further restrictions

on the considered model. Accordingly, the model ∆ encompasses all the relevant

randomness considered by the analyst. This may include a base theoretical model,

and considerations on measurement error or unobserved heterogeneity. An instance of

the model, that is, a particular stochastic choice function in the set of theoretically

admissible ones, is typically denoted by δ ∈ ∆.

We say that 〈λ, δ, ε〉 ∈ [0, 1] × ∆× SCF is a separation of data ρ whenever ρ =

λδ+(1−λ)ε. In a separation, we write ρ as a convex combination of the stochastic choice

function δ, which contains randomness consistent with model ∆, and the stochastic

choice function ε, which represents unstructured residual behavior. The fraction of

data explained by the model in the separation is given by weight λ. We are particularly

interested in explaining the largest possible fraction of data using model ∆. We say that

a separation 〈λ∗, δ∗, ε∗〉 is maximal if there does not exist any other separation 〈λ, δ, ε〉
with λ > λ∗. The following proposition shows the existence of maximal separations

and facilitates their computation.6

Proposition 1. Maximal separations always exist and are characterized by:

(1) λ∗ = max
δ∈∆

min
(a,A)∈O

ρ(a,A)
δ(a,A)

,

(2) δ∗ ∈ arg max
δ∈∆

min
(a,A)∈O

ρ(a,A)
δ(a,A)

, and

(3) ε∗ = ρ−λ∗δ∗
1−λ∗ .

In order to grasp the logic implicit in Proposition 1, let us consider the non-trivial

case where ρ 6∈ ∆. Consider any instance of the model δ ∈ ∆. Then, for 〈λ, δ, ε〉
to be a separation of ρ, the residual stochastic choice function ε must lie on the line

defined by ρ and δ, with ρ in between δ and ε. Now, notice that we can always trivially

5This assumption is for expositional convenience; the case of ρ in the boundary of SCF can be

trivially dealt with.
6In order to avoid the discussion of indeterminacy in fractions throughout the text, we set the

ratio ρ(a,A)
0 to be strictly larger than any real number. This is a harmless convention, since we could

simply replace the expression min(a,A)∈O
ρ(a,A)
δ(a,A) with min(a,A)∈O,δ(a,A) 6=0

ρ(a,A)
δ(a,A) . Moreover, whenever

λ∗ = 1, ε∗ is any stochastic choice function. All proofs are contained in the Appendix.
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consider the separation 〈0, δ, ρ〉, where all data is regarded as residual behavior. To

obtain larger values of λ with instance δ requires ε to depart from ρ in the opposite

direction to that taken by δ. Ultimately, λ will be maximal when the residual behavior

ε reaches the frontier of SCF, i.e., when some observation has either probability zero or

one. Indeed, we need only to consider the case ε(a,A) = 0, i.e., ρ(a,A) < δ(a,A) or,

equivalently, ρ(a,A)
δ(a,A)

< 1. This is because, if ε(a,A) = 1 for some observation, we must

also have that ε(b, A) = 0 for any other alternative b ∈ A\{a}. Trivially, ε(a,A) = 0 is

equivalent to λ = ρ(a,A)
δ(a,A)

and hence, the frontier will be first reached by the observation

that minimizes the ratio ρ(a,A)
δ(a,A)

. Since these observations will play a key role in our

analysis, we provide a formal definition here. Given instance δ, the set of observations

that minimize the ratio ρ(a,A)
δ(a,A)

are called δ-critical observations and are denoted by

Oδ. Obviously, the maximal fraction of data that can be explained with instance δ

is min
(a,A)∈O

ρ(a,A)
δ(a,A)

, or, equivalently, ρ(a,A)
δ(a,A)

for any (a,A) ∈ Oδ. When considering all the

possible instances of the model ∆, the result follows.

As already mentioned, Proposition 1 works for arbitrary domains of menus. One

domain, which has received a great deal of attention in the stochastic choice literature,

is that of binary menus. Since we will also be using this domain in our experimental

application, it is worth mentioning that it is one in which Proposition 1 is particularly

simple to apply. In essence, notice that any instance of a model will over-predict the

probability of choice of one of the alternatives in each binary menu of the domain,

while under-predicting the other. Thus, one instance of the model is able to explain

a fraction of the data that can be computed by looking at the least over-predicted

alternative among all pairs.

4. Particular models of choice

Section 3 characterizes maximal separations for every possible model ∆. We now

work with specific choice models. In each case we use Proposition 1, together with

the particular structure of the model being studied, to offer tighter results on maximal

separations. The models we consider are the deterministic choice model, and three sto-

chastic choice models incorporating different forms of randomness: the tremble model,

the Luce model and the single-crossing random utility model. The three stochastic

choice models have the deterministic model as a special case, but are mutually inde-

pendent. Appendix B illustrates the application of each of the results developed here

using a simple example involving three alternatives.



9

4.1. Deterministic rationality. The standard economic decision-making model con-

templates no randomness whatsoever. Behavior is deterministic and described as the

outcome of the maximization of a single preference relation. Thus, in the light of the

deterministic model, all behavioral randomness must be regarded as residual behav-

ior. Formally, denote by P the collection of all strict preference relations, that is, all

transitive, complete and asymmetric binary relations on X. Maximization of P ∈ P
generates the deterministic rational choice function δP , which assigns probability one

to the maximal alternative in menu A according to preference P . We denote this alter-

native by mP (A), i.e., mP (A) ∈ A and mP (A)Py for every y ∈ A \ {mP (A)}. Denote

by DET the model composed of all the deterministic rational choice functions.

The following result shows that the maximal separation for DET can be easily com-

puted using a simple recursive structure on subdomains of the data. For present-

ing the result, some notation will be useful. Given a subset S ⊆ X, denote by

D|S = {A ∈ D : A ⊆ S} and O|S = {(a,A) ∈ O : A ⊆ S} the corresponding

subdomains of menus and observations involving subsets of S. Then:

Proposition 2. Let {λS}S:D|S 6=∅ and P ∈ P satisfy

(1) λS = max
a∈S

min
{
{ρ(a,A)}(a,A)∈O|S , λS\{a}

}
,

(2) mP (S) ∈ arg max
a∈S

min
{
{ρ(a,A)}(a,A)∈O|S , λS\{a}

}
.7

Then, 〈λX , δP , ρ−λXδP1−λX
〉 is a maximal separation for the deterministic model.

Proposition 2 enables a recursive computation of maximal separations for DET. More

precisely, the algorithm constructs a maximal separation for each restriction of data ρ

to a subdomain of menus D|S, starting with subdomains where D|S = {S}, i.e., menus

for which there are no available data in proper subsets. In these menus, only the highest

choice frequency of an alternative must be considered. The maximal separation can be

constructed by considering the preference relation that places the alternative with the

highest choice frequency above all other alternatives. For any other subdomain D|S,

the algorithm must analyze the alternatives a ∈ S one by one, again considering the

consequences of placing a as the maximal alternative in S. It turns out to be the case

that we just need to consider the following values: (i) the choice frequencies of a in

7Notice that equations (1) and (2) always compute a minimum over a non-empty collection of

values. This is so because the computation only takes place when D|S is non-empty and, hence, either

a ∈ A for some A ⊆ S, or D|S\{a} 6= ∅.
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subsets of S, and (ii) the maximal fractions over the subdomains where alternative a

is not present.8

4.2. Tremble model. In tremble models, behavioral randomness is interpreted as a

mistake at the moment of choice. In the simplest version, the individual contemplates

a preference relation P . With probability (1− γ) ∈ [0, 1], the preference is maximized.

With probability γ, the individual trembles and randomizes between all the alternatives

in the menu.9 This generates the tremble choice function δ[P,γ](a,A) = γ
|A| whenever a ∈

A\{mP (A)} and δ[P,γ](mP (A), A) = 1−γ |A|−1
|A| . Denote by Tremble the model composed

of all tremble choice functions. The next result describes the maximal fraction of data

explained by Tremble and a maximal separation for Tremble.

Proposition 3. Let {λS(γ)}S:D|S 6=∅ and P (γ) ∈ P satisfy, for every γ ∈ [0, 1]:

(1) λS(γ) = max
a∈S

min
{
{ |A|ρ(a,A)

(1−γ)|A|+γ}(a,A)∈O|S , {
|A|ρ(b,A)

γ
}(b,A)∈O|S

b 6=a∈A
, λS\{a}(γ)

}
,

(2) mP (γ)(S) ∈ arg max
a∈S

min
{
{ |A|ρ(a,A)

(1−γ)|A|+γ}(a,A)∈O|S , {
|A|ρ(b,A)

γ
}(b,A)∈O|S

b 6=a∈A
, λS\{a}(γ)

}
.

Let γ∗ be the tremble value that maximizes λX(γ). Then, 〈λX(γ∗), δ[P (γ∗),γ∗],
ρ−λX(γ∗)δ[P (γ∗),γ∗]

1−λX(γ∗)
〉

is a maximal separation for the tremble model.

Given the immediate connection to the rational deterministic model, the intuition

of the result is analogous to that in Proposition 2.10

4.3. Luce model. Denote by U the collection of strictly positive utility functions u

such that, without loss of generality,
∑

x∈X u(x) = 1. Given u ∈ U , a strictly positive

Luce stochastic choice function is defined by δu(a,A) = u(a)∑
b∈A u(b)

with a ∈ A ∈ D. In

order to accommodate the Luce model in our framework we consider the closure of the

8A particularly interesting example involves binary domains in which some stochastic transitivity

property is satisfied. In this case, it is easy to see that the identified preference will be consistent with

the stochastic revealed preference.
9See Harless and Camerer (1994) for an early treatment of the trembling-hand concept in the

stochastic choice literature.
10As in the deterministic case with binary domains, where choice satisfies stochastic transitivity,

the maximal separation for the tremble model identifies the preference relation that is consistent

with the stochastic revealed preference. Hence, in this case, both the deterministic and the tremble

models identify the same preference relation. Interestingly, this is exactly the case in our empirical

application. However, as we show in Appendix B, the maximal separations for the deterministic and

tremble models do not, in general, necessarily identify the same preference relation.



11

set of strictly positive Luce stochastic choice functions, which we denote by Luce.11 We

write δL to denote a generic, not necessarily strictly positive, Luce stochastic choice

function. However, as shown in the proof of Proposition 4, there are always instances

of the model of Luce identified in the maximal separations that are strictly positive,

and hence, the former assumption is inconsequential.

We now describe the structure of maximal separations of Luce. From Proposition 1

we know that the study of a particular instance of model δL requires us to analyze its

critical observations OδL . It turns out to be the case that, under the Luce model, we

only need to check for a simple condition on the set OδL .

Proposition 4. 〈min(a,A)
ρ(a,A)
δ∗L(a,A)

, δ∗L,
ρ−λ∗δ∗L
1−λ∗ 〉 is a maximal separation for the Luce model

if and only if Oδ∗L contains a sub-collection {(ai, Ai)}Ii=1 such that
⋃I
i=1{ai} =

⋃I
i=1Ai.

Proposition 4 provides a simple means to obtain maximal separations for the Luce

model, which involves checking whether the critical observations of a Luce stochastic

choice function satisfy a cyclical property. From here, the computation of λ∗ and ε∗

follows in the usual manner. To explain the intuition of the proof, consider a strictly

positive instance of Luce given by u ∈ U and its critical observationsOδu . Proposition 4

states that if there is a subcollection {(ai, Ai)}Ii=1 ⊆ Oδu such that
⋃I
i=1{ai} =

⋃I
i=1Ai,

then δu is part of a maximal separation. To see this, suppose that there exists a

separation using another Luce instance δv explaining a larger fraction of the data. It

must be the case that δv assigns lower Luce probabilities to all the critical observations

of δu. Clearly, reducing the Luce probability in (a1, A1) requires that one alternative

in A1, say a2, is such that v(a2)/v(a1) > u(a2)/u(a1). However, since there exists a

critical observation of the form (a2, A2), we need to find another alternative in A2,

say a3, with v(a3)/v(a2) > u(a3)/u(a2). Given that
⋃I
i=1{ai} =

⋃I
i=1Ai, this line of

reasoning leads to a cycle, and consequently, we cannot improve the ρ/δ ratio of all

the critical observations of δu, which shows its maximality. The situation is entirely

different when there is x ∈
⋃I
i=1 Ai\

⋃I
i=1{ai}. In this case, we can find an improvement

by moving the Luce values in the direction of alternative x, that is, by increasing the

Luce utility of x and reducing all the rest by the same proportion. It can be shown that

this logic ultimately makes all ρ/δ ratios of the critical observations of δu to increase.

11Effectively, the added stochastic choice functions have zero choice probabilities in some obser-

vations, and Luce-type behavior otherwise. See Echenique and Saito (2018) and Horan (2019) for

studies of the treatment of zero choice probabilities in models à la Luce.
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Notice that the proof of Proposition 4 lays down a simple algorithm with which to

identify maximal separations for the Luce model. One can start with any vector of

weights u ∈ U and check the stated property. If the property is satisfied, δ∗ = δu, which

leads to the computation of λ∗ and ε∗. Otherwise,
⋃I
i=1Ai \

⋃I
i=1{ai} is non-empty,

allowing one of the alternatives in this set to be selected and the utilities to be moved

along the segment α1x + (1− α)u, where 1x is a function assigning a value 1 to x and

a value 0 to any other alternative. Eventually, this leads to a new Luce vector which

explains a strictly larger fraction of the data, and the characterizing property can be

re-verified. This ascending algorithm yields the maximal separation.

4.4. Single-crossing random utility model. In random utility models (RUMs),

there exists a probability distribution µ over the set of all possible preferences P .

At the choice stage, a preference is realized according to µ, and maximized, thereby

determining the choice probabilities δµ(a,A) =
∑

P∈P:a=mP (A)

µ(P ), for every (a,A) ∈ O.

In other words, the choice probability of a given alternative within a menu is given by

the sum of the probability masses associated to the preferences where the alternative

is maximal within the menu.

The literature has often considered these models as complex to work with, and

offered models in restricted domains that facilitate their use in applications. Here,

we focus on the single-crossing random utility models (SCRUMs), which are RUMs

over a set of preferences satisfying the single-crossing condition.12 Formally, SCRUMs

consider probability distributions µ on a given ordered collection of preferences P ′ =

{P1, P2, . . . , PT}, satisfying the single-crossing condition Pj∩P1 ⊆ Pi∩P1 if and only if

j ≥ i. That is, the preference over a pair of alternatives x and y reverses once at most

in the ordered collection of preferences. We denote the set of SCRUM stochastic choice

functions by SC. Proposition 5 characterizes the maximal separations for SCRUMs.

Proposition 5. Let λ1 = min
A∈D

ρ(mP1(A), A) and δµ1 = δP1, and for every i ∈ {2, . . . , T}
define recursively

(1) λi = min
A∈D

{
ρ(mPi(A), A) + max

j:j<i,mPj (A)6=mPi (A)
λj

}
,

(2) δµi = (1− λi−1

λi
)δPi + λi−1

λi
δµi−1

.

Then, 〈λT , δµT ,
ρ−λT δµT

1−λT
〉 is a maximal separation for SCRUM.

12See Apesteguia, Ballester and Lu (2017) for a study of this model. Other RUMs using restricted

domains are Gul and Pesendorfer (2006) and Lu and Saito (2017).
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Proposition 5 provides a smooth recursive method with which to obtain a maximal

separation. It basically computes the maximal fraction of data, λi, that can be ex-

plained by SCRUMs using preferences up to Pi. Trivially, the maximal fraction of data

explained by P1 is min
A∈D

ρ(mP1(A), A). Now consider any other preference Pi ∈ P ′ and

assume that every preference Pj, j < i, has been analyzed. With the extra preference

Pi, and for a given menu A, we can rationalize data ρ(mPi(A), A) together with any

other data ρ(x,A), x 6= mPi(A), that is rationalized by preferences preceding Pi. This

can be achieved by considering the appropriate linear combination of the constructed

SCRUM that uses preferences up to Pi−1 with preference Pi.

5. An empirical application

Here we use an experimental dataset to operationalize the maximal separation results

obtained in the previous section.13 There were nine equiprobable monetary lotteries,

described in Table 1. Each of the 87 participants faced 108 different menus of lotteries,

including all 36 binary menus and a random sample of larger menus.14 There were two

treatments. Treatment NTL was a standard implementation, with no time limit on

the choice. In treatment TL, subjects had to select a lottery within a limited time. At

the end of the experiment, one of the menus was chosen at random and the subject

was paid according to his or her choice from that menu.15

Table 1. Lotteries

l1 = (17) l4 = (30, 10) l7 = (40, 12, 5)

l2 = (50, 0) l5 = (20, 15) l8 = (30, 12, 10)

l3 = (40, 5) l6 = (50, 12, 0) l9 = (20, 12, 15)

To ensure a sufficiently large number of data points per menu, we focus on the

choices made in the binary menus, which, when aggregating both treatments, gives a

13We collected the experimental data together with Syngjoo Choi at UCL in March 2013, within

the context of another research project. This is the first completed paper to use this dataset. We are

very grateful to Syngjoo for kindly allowing us to use this dataset.
14There were menus of 2, 3 and 5 alternatives, presented one at a time, in a randomized order. No

participant was presented more than once with the same menu of alternatives. The location of the

lotteries on the screen was randomized, as was the location of the monetary prizes within a lottery.
15Specifically, subjects had 5, 7 and 9 seconds for the menus of 2, 3, and 5 alternatives, respectively.
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total of 87 data points per menu.16 Table 2 reports the choice probabilities in each

of the binary menus. It also reports the optimal and the residual stochastic choice

functions identified in the maximal separation results, using the models described in

the previous section. In SCRUM we use the CRRA expected utility representation,

which is by far the most widely used utility representation for risk preferences.17 There

are several lessons to be learned from the table.

First note that the maximal fractions of the data explained by the respective models

increase from the deterministic choice model, to the tremble model, to the Luce model

and, finally, to the SCRUM-CRRA model. It is worth noting that the deterministic

model already explains about half of the data, i.e., 0.51.18 The identified optimal

instance is the one associated with the preference l1Pl5Pl4Pl8Pl7Pl9Pl3Pl6Pl2. The

top alternative, lottery l1, is the safest, since it gives £17 with probability one. The next

is lottery l5, which has the second lowest variance at the expense of a very low expected

return. Lottery l2, the one with the highest expected value and highest variance, is

regarded as the worst alternative. Hence, the deterministic model pictures a population

that is essentially highly risk-averse. The model reaches its explanatory limits with

the critical observation (l8, {l7, l8}) where, by Proposition 1, the ratio of observed to

predicted probability is minimal. Specifically, the observed choice probability is 0.51

while the deterministic prediction is 1. The ratio of these two values gives the fraction

of data explained by the model, 0.51.

The tremble model identifies exactly the same preference as the deterministic model,

while increasing the maximal fraction of the data explained from 0.51 to 0.68. This is

the result of using a relatively large tremble probability, γ = 0.51. The tremble model

16Due to the time limit in one of the treatments, the number is slightly lower for some menus.

Specifically, there are 18 menus with 87 data points, 12 with 86, 3 with 85 and 3 with 84.
17The CRRA Bernoulli function is x1−r

1−r , whenever r 6= 1, and log x otherwise, with x representing

money. We have also studied the cases of CARA expected utility, and mean-variance utility, and

obtained similar results, which are available upon request. Note that SCRUM with CRRA is but a

generalization of the random parameter model that we use in Apesteguia and Ballester (2018), in the

sense that the former does not impose any probability distribution over the set of preferences.
18In order to put this result into perspective, consider Crawford and Pendakur’s (2002) study of

Danish household survey data on the purchase of six different types of milk. They find that a single

preference relation is sufficient to rationalize 64% of the data. The Houtman-Maks index gives a

consistency level of 66%. In Appendix D we review this index, arguing that it is slightly more flexible

than the application of the maximal separation technique to the deterministic model, which explains

the higher consistency found in the data.
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Table 2. Data and Maximal Separations

DET TREMBLE LUCE SCRUM-CRRA

(a,A) ρ δ∗DET ε∗DET δ∗Tremble ε∗Tremble δ∗Luce ε∗Luce δ∗SC-CRRA ε∗SC-CRRA

(l1, {l1, l2}) 0.75 1.00 0.49 0.74 0.75 0.91 0.30 0.74 0.77

(l1, {l1, l3}) 0.60 1.00 0.19 0.74 0.29 0.71 0.28 0.55 0.78

(l2, {l2, l3}) 0.33 0.00 0.67 0.26 0.50 0.20 0.69 0.24 0.66

(l1, {l1, l4}) 0.53 1.00 0.05 0.74 0.07 0.62 0.27 0.47 0.75

(l2, {l2, l4}) 0.28 0.00 0.56 0.26 0.32 0.15 0.64 0.24 0.40

(l3, {l3, l4}) 0.43 0.00 0.86 0.26 0.78 0.40 0.50 0.42 0.46

(l1, {l1, l5}) 0.58 1.00 0.16 0.74 0.24 0.46 0.92 0.47 1.00

(l2, {l2, l5}) 0.25 0.00 0.51 0.26 0.25 0.08 0.73 0.26 0.23

(l3, {l3, l5}) 0.45 0.00 0.92 0.26 0.87 0.26 1.00 0.45 0.46

(l4, {l4, l5}) 0.49 0.00 0.99 0.26 0.98 0.34 0.89 0.53 0.33

(l1, {l1, l6}) 0.72 1.00 0.44 0.74 0.68 0.87 0.31 0.76 0.60

(l2, {l2, l6}) 0.44 0.00 0.89 0.26 0.84 0.42 0.51 0.42 0.53

(l3, {l3, l6}) 0.80 1.00 0.60 0.74 0.93 0.74 1.00 0.79 0.84

(l4, {l4, l6}) 0.76 1.00 0.51 0.74 0.79 0.81 0.62 0.76 0.76

(l5, {l5, l6}) 0.75 1.00 0.49 0.74 0.75 0.89 0.35 0.76 0.71

(l1, {l1, l7}) 0.63 1.00 0.25 0.74 0.38 0.77 0.23 0.74 0.22

(l2, {l2, l7}) 0.24 0.00 0.49 0.26 0.22 0.26 0.21 0.26 0.19

(l3, {l3, l7}) 0.48 0.00 0.96 0.26 0.94 0.57 0.20 0.53 0.27

(l4, {l4, l7}) 0.62 1.00 0.24 0.74 0.37 0.67 0.49 0.76 0.14

(l5, {l5, l7}) 0.63 1.00 0.26 0.74 0.40 0.79 0.18 0.76 0.18

(l6, {l6, l7}) 0.27 0.00 0.54 0.26 0.29 0.33 0.10 0.24 0.36

(l1, {l1, l8}) 0.64 1.00 0.27 0.74 0.42 0.67 0.57 0.76 0.21

(l2, {l2, l8}) 0.22 0.00 0.45 0.26 0.15 0.17 0.36 0.26 0.09

(l3, {l3, l8}) 0.36 0.00 0.73 0.26 0.58 0.45 0.12 0.45 0.03

(l4, {l4, l8}) 0.56 1.00 0.12 0.74 0.18 0.55 0.60 0.56 0.56

(l5, {l5, l8}) 0.62 1.00 0.23 0.74 0.36 0.70 0.40 0.76 0.13

(l6, {l6, l8}) 0.20 0.00 0.40 0.26 0.07 0.23 0.12 0.24 0.04

(l7, {l7, l8}) 0.49 0.00 1.00 0.26 1.00 0.37 0.83 0.42 0.77

(l1, {l1, l9}) 0.76 1.00 0.51 0.74 0.78 0.74 0.81 0.79 0.62

(l2, {l2, l9}) 0.28 0.00 0.56 0.26 0.32 0.23 0.42 0.28 0.28

(l3, {l3, l9}) 0.39 0.00 0.79 0.26 0.68 0.53 0.00 0.45 0.17

(l4, {l4, l9}) 0.55 1.00 0.08 0.74 0.13 0.63 0.32 0.53 0.60

(l5, {l5, l9}) 0.83 1.00 0.65 0.74 1.00 0.76 1.00 1.00 0.20

(l6, {l6, l9}) 0.22 0.00 0.44 0.26 0.14 0.29 0.02 0.26 0.08

(l7, {l7, l9}) 0.56 1.00 0.12 0.74 0.18 0.46 0.87 0.45 0.96

(l8, {l8, l9}) 0.64 1.00 0.26 0.74 0.41 0.58 0.78 0.53 1.00

λ∗∆ 0.51 0.68 0.74 0.78

Note: (a,A) denotes the observation referring to alternative a from menu A, ρ the observed percentage

of choosing lottery a from menu A, and 〈λ∗∆, δ
∗
∆, ε
∗
∆〉 the maximal separation of ρ for model ∆ ∈

{DET, Tremble, Luce, SC-CRRA}. Data entries in bold refer to the menus containing the critical observations

in the respective model.
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is characterized by critical observations (l8, {l7, l8}) and (l9, {l5, l9}). As in the deter-

ministic case, choice data is scarce for l8 versus l7, but the problem is less severe thanks

to the presence of a tremble, due to which, the individual is predicted to choose l8 only

with probability 0.74, thereby reducing the ratio of observed to predicted probabilities

to 0.68. This ratio cannot be improved beyond this point. Although increasing the

tremble probability would increase this ratio, it would also decrease the ratio of the

other critical observation, (l9, {l5, l9}), which has the same value of 0.68. To see this,

notice the choice prediction for alternative l9, being worse than alternative l5, corre-

sponds entirely to the tremble probability, and hence, an increase in tremble would

increase the predicted probability and thus decrease the ratio.

The Luce model is able to explain close to three quarters of the data. The optimal

utility values for the lotteries are u = (0.22, 0.02, 0.09, 0.13, 0.25, 0.03, 0.07, 0.11, 0.08),

which again suggest a highly risk averse population. The alternative with the highest

Luce utility value is lottery l5, followed by lottery l1, while lottery l2, which is the

riskiest, has the lowest Luce utility value. That is, although u does not represent

PDET exactly, it represents a preference very close to it. Interestingly, we see that the

Luce model can accommodate a larger fraction of the data by allowing randomness to

depend on the cardinal evaluation of alternatives. The model is hard pressed to explain

observations (l5, {l3, l5}), (l6, {l3, l6}), (l3, {l3, l9}) and (l9, {l5, l9}), that represent the

type of cyclical structure described in Proposition 4. In each of these observations, the

ratio of observed to predicted probabilities is equal to 0.74. Increasing any of these

ratios would require decreasing the utility of one alternative in {l3, l5, l6, l9}, but only,

of course, at the expense of the ratio of another of these critical observations.

Finally, SC-CRRA explains as much as nearly 80% of the data. In so doing, it as-

signs positive masses to 10 of the 30 possible CRRA preferences, with the largest

probability mass, 0.44, associated with the most risk averse CRRA preference, i.e.,

preference l1Pl5Pl9Pl8Pl4Pl7Pl3Pl6Pl2, which is again very close to PDET. Since each

preference compatible with CRRA corresponds to an interval of risk aversion levels,

we can completely describe the optimal SC-CRRA instance by reporting the values of

the cumulative distribution function at the upper bounds of these intervals. These

are F (−4.15) = 0.205, F (−0.31) = 0.241, F (−0.08) = 0.242, F (0.34) = 0.258,

F (0.41) = 0.276, F (0.44) = 0.416, F (0.61) = 0.453, F (1) = 0.533, F (4) = 0.563

and F (∞) = 1. Notice that, in addition to explaining a large fraction of the data,

SC-CRRA is also rich enough to show that a quarter of the population is risk loving,
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F (−0.08) = 0.242. The limits of SC-CRRA in explaining the data are reached at obser-

vations (l5, {l1, l5}) and (l9, {l8, l9}). On the one hand, lottery l5 is preferred over lottery

l1 by all CRRA levels with a risk aversion level below 2, which has an accumulated

mass of 0.533. Given the observed choices, this leads to a critical ratio for observation

(l5, {l1, l5}) of 0.78. Improving this ratio would necessarily require us to assign a higher

weight to levels of risk aversion above 2. However, this would immediately conflict

with the ratio of l9 to l8, since l9 is ranked above l8 at all levels of risk aversion above

1. As the ratio of observed to predicted data for (l9, {l8, l9}) also has the critical value

of 0.78, no improvement can take place.19

To conclude the discussion of Table 2, we would like to emphasize that the four

models are very consistent in the qualitative judgment of the population. All four

models take the population of subjects to be highly risk averse. Then, we see that, by

introducing different sources of randomness, it is possible to explain larger fractions

of the data, and that the precise source of randomness affects the fraction of the data

explained.

6. Other goodness of fit measures

The maximal separation exercise identifies a best instance of the model δ∗ ∈ ∆ and

an expression of residual behavior ε∗ ∈ SCF such that, combined at rates λ∗ and 1−λ∗,
generate data ρ. The value λ∗ is a tight upper bound for the fraction of data that

can be explained by the model. Thus, the exercise provides a goodness of fit measure

of model ∆ to data ρ. There are other well-known measures in the literature that

partially share the structure of the maximal separation measure, in the sense that they

also identify one instance of the model that maximizes a notion of closeness to the

data.20 For the sake of comparison, we adopt the standard language of minimization

of loss functions and talk of lack of fit all along the section.21

19In Appendix C we use this dataset to analyze the maximal separation using the random expected

utility of Gul and Pesendorfer (2006).
20We say that the other measures partially share the structure of maximal separations because

they do not identify (minimal) expressions of residual behavior. This component, that we believe may

be crucial in the understanding of actual behavior and revision of theoretical models, is unique to

maximal separations.
21By lack of fit, sometimes also known as badness of fit, we mean the mirror notion of goodness of

fit; basically, how poorly a model fits the data.
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Formally, a loss function is a map L : ∆ × ρ → R+ that measures the deviation of

every instance δ ∈ ∆ with respect to data ρ. The lack of fit and the best instance

of the model follow immediately from the minimization of the loss function among

the different instances of the model.22 Now, in a maximal separation, the minimal

fraction of data unexplained, 1 − λ∗, represents a measure of the lack of fit that can

be written as the minimization of a loss function. From Proposition 1 we know that

1−λ∗ = 1−maxδ∈∆ min
(a,A)∈O

ρ(a,A)
δ(a,A)

= minδ∈∆[ max
(a,A)∈O

(1− ρ(a,A)
δ(a,A)

)] and hence, we can write

the maximal separation loss function as LMS(δ, ρ) = max
(a,A)∈O

[1− ρ(a,A)
δ(a,A)

].

Two other important goodness of fit measures are maximum likelihood and least

squares. The maximum likelihood exercise involves the minimization of the Kullback-

Leibler divergence from δ to ρ, and this can be written as the minimization of the loss

function LML(δ, ρ) =
∑

(a,A)∈O ρ(a,A) log ρ(a,A)
δ(a,A)

.23 Similarly, least squares involves the

minimization of the quadratic loss function LLS(δ, ρ) =
∑

(a,A)∈O(δ(a,A)− ρ(a,A))2.

Inspecting the loss functions, it is immediately clear that the maximal separation

measure is different to those defined by maximum likelihood and least squares. Cru-

cially, while the maximal separation is concerned with the largest deviation between

the data and the specified model, maximum likelihood and least squares aggregate the

deviations across the different observations. This has two implications. Firstly, there

should be datasets and models where maximal separation identifies different best in-

stances of the model. Secondly, we should expect maximal separation to provide more

accurate over-estimations for those observations for which the frequency of observed

choice is low, while the other measures would perform better on average. In what

follows we use our experimental dataset to empirically illustrate these two points.

Table 3 illustrates the first point. It reports the instances of the models identified

by the maximal separation and the maximum likelihood techniques over the entire

22Notice that, when the model ∆ is the deterministic rational model of choice, lack of fit merely

corresponds to a notion of irrationality of the data. As mentioned in Section 2, most measures of

irrationality, including Afriat, Varian, Houtman-Maks and the Swaps Index adopt this minimization

structure. For the specific case of the deterministic model, Appendix D formally compares the maximal

separation approach with other rationality measures.
23The Kullback-Leibler divergence can be interpreted as the amount of information lost due to the

use of δ instead of ρ
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Table 3. Maximal Separation and Maximum Likelihood

Deterministic

MS P = [l1, l5, l4, l8, l7, l9, l3, l6, l2]

ML P = [l1, l5, l4, l8, l7, l9, l3, l6, l2]

Tremble

MS P = [l1, l5, l4, l8, l7, l9, l3, l6, l2]; γ = 0.51

ML P = [l1, l5, l4, l8, l7, l9, l3, l6, l2]; γ = 0.68

Luce

MS u = (0.22, 0.02, 0.09, 0.13, 0.25, 0.03, 0.07, 0.11, 0.08)

ML u = (0.18, 0.04, 0.1, 0.14, 0.17, 0.04, 0.11, 0.13, 0.09)

SCRUM-CRRA

MS F (−4.15) = 0.205, F (−0.31) = 0.241, F (−0.08) = 0.242, F (0.34) = 0.258, F (0.41) = 0.276

F (0.44) = 0.416, F (0.61) = 0.453, F (1) = 0.533, F (4) = 0.563, F (∞) = 1

ML F (−4.15) = 0.22, F (−0.31) = 0.287, F (0.44) = 0.442

F (1) = 0.506, F (4) = 0.563, F (∞) = 1

Note: MS and ML denote maximal separation and maximum likelihood, respectively. P denotes the preference identified

in the corresponding case, where the ranking declines from left to right, γ is the tremble probability in Tremble, u is the

Luce utility vector associated with Luce, where the i-th entry in u corresponds to the utility value of lottery li, and finally

F (r) denotes the cumulative probability masses associated with the upper bounds of the intervals of the relative risk aversion

coefficients r consistent with those CRRA preference relations that have a strictly positive mass in the corresponding estimation

procedure.

dataset.24 With respect to the deterministic model, no difference whatsoever is ob-

served, as exactly the same preference relation is estimated. This ordinal equivalence

is preserved in the case of the tremble model, although our technique predicts a sub-

stantially smaller trembling coefficient, 0.51 < 0.68. The intuition for this difference

is straightforward. Recall that, as we mentioned above, (l9, {l5, l9}) is a critical obser-

vation in the maximal separation exercise for Tremble. The observed probability in

this observation is small, 0.17, and the identified instance of the model for our tech-

nique predicts, due to the trembling parameter, a rather large relative frequency of

0.26. However, the maximum likelihood exercise is not severely affected by this local

24In the ML calculations we impose a lower bound in the theoretical predictions, in order to ensure

strictly positive likelihoods. Least squares give practically identical results to maximum likelihood,

and hence it is omitted.
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consideration and makes the estimation only by averaging over all the observations.

Consequently, the estimation exercise in maximum likelihood is willing to sacrifice the

prediction quality of this extreme observation in order to favor the prediction over

other moderate ones. This is done by increasing substantially the trembling parameter

and consequently the prediction in this particular observation (l9, {l5, l9}), reaching

a disproportionate value of 0.34, two times the observed value. A similar reasoning

applies to the comparison of the cases of Luce and SC-CRRA.

In order to illustrate the comparison of the different approaches, we now perform

an out-of-sample exercise. This, in turn, allows us to evaluate the second conjecture

stated above.25 We take all the binary data except for one binary set, estimate the

instances of the models by maximal separation and maximum likelihood using these

data, and use the estimated instances to predict the behavior in the omitted binary

set. We perform this procedure on 36 binary sets. For each binary set, there are two

cases: one in which both maximal separation and maximum likelihood over-estimate

the choice probability of the same alternative in the binary menu, and another in which

they over-estimate the choice probability of different alternatives. By focusing on the

first case, comparison of the predictive powers of maximal separation and maximum

likelihood becomes straightforward; one of the methods is unambiguously more accu-

rate than the other.26 We therefore focus our comparison on these menus, since the

conclusions may otherwise depend on the particular distance function employed. Table

4 reports the results.27 As announced above, the analysis of the loss functions involved

in the two techniques suggested a very intuitive conjecture. Namely, that the maximal

separation technique is very cautious and can therefore be expected to perform better

in observations with low choice probabilities. This conjecture is largely confirmed in

25Effectively, this second conjecture could also be evaluated using the in-sample estimations. These

results, which closely mimic the pattern obtained with the out-of-sample exercise, are reported in the

online appendix. In addition, the out-of-sample exercise is complemented in Appendix C by using the

non-binary part of the dataset, while, in Appendix B, we elaborate further on the intuition for this

conjecture by adopting a more theoretical approach, using a particular data-generating process and

the tremble model.
26Notice that, in binary menus, if one alternative is over-estimated, the other is under-estimated

and, for both observations, there is one method that is more accurate than the other. Thus, discussing

the results for, say, the over-estimated alternatives implies no loss of generality.
27We do not report the results of the deterministic method, since, in this case, the maximal sepa-

ration and maximum likelihood predictions are exactly the same.
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Table 4. Forecasting Results of Maximal Separation and Maximum

Likelihood

Tremble Luce SCRUM-CRRA

(a,A) ρ MS ML (a,A) ρ MS ML (a,A) ρ MS ML

(l9, {l5, l9}) 0.17 0.28 0.35 (l9, {l5, l9}) 0.17 0.39 0.41 (l6, {l3, l6}) 0.20 0.21 0.27

(l6, {l3, l6}) 0.20 0.26 0.35 (l6, {l3, l6}) 0.20 0.27 0.32 (l6, {l6, l8}) 0.20 0.26 0.29

(l6, {l6, l8}) 0.20 0.26 0.35 (l6, {l6, l8}) 0.20 0.23 0.25 (l6, {l6, l9}) 0.22 0.26 0.29

(l6, {l6, l9}) 0.22 0.26 0.34 (l6, {l6, l9}) 0.22 0.29 0.34 (l2, {l2, l8}) 0.22 0.26 0.29

(l2, {l2, l8}) 0.22 0.26 0.34 (l2, {l2, l7}) 0.24 0.26 0.29 (l6, {l4, l6}) 0.24 0.24 0.29

(l6, {l4, l6}) 0.24 0.26 0.34 (l9, {l1, l9}) 0.24 0.26 0.36 (l2, {l2, l7}) 0.24 0.26 0.29

(l2, {l2, l7}) 0.24 0.26 0.34 (l3, {l3, l8}) 0.36 0.49 0.46 (l2, {l1, l2}) 0.25 0.26 0.29

(l9, {l1, l9}) 0.24 0.26 0.34 (l9, {l8, l9}) 0.36 0.42 0.43 (l2, {l2, l5}) 0.25 0.26 0.29

(l2, {l1, l2}) 0.25 0.26 0.34 (l3, {l3, l9}) 0.39 0.63 0.56 (l3, {l3, l8}) 0.36 0.47 0.45

(l2, {l2, l5}) 0.25 0.26 0.34 (l5, {l1, l5}) 0.42 0.58 0.50 (l9, {l8, l9}) 0.36 0.55 0.52

(l6, {l5, l6}) 0.25 0.26 0.34 (l9, {l7, l9}) 0.44 0.54 0.46 (l3, {l3, l9}) 0.39 0.45 0.48

(l3, {l3, l9}) 0.39 0.74 0.66 (l8, {l4, l8}) 0.44 0.45 0.49 (l3, {l1, l3}) 0.40 0.45 0.45

(l2, {l2, l6}) 0.44 0.74 0.66 (l8, {l7, l8}) 0.51 0.59 0.55 (l5, {l1, l5}) 0.42 0.56 0.56

(l4, {l4, l5}) 0.49 0.74 0.66 (l5, {l4, l5}) 0.51 0.68 0.54 (l9, {l7, l9}) 0.44 0.58 0.58

(l7, {l7, l8}) 0.49 0.75 0.66 (l1, {l1, l4}) 0.53 0.63 0.56 (l9, {l4, l9}) 0.45 0.47 0.50

(l7, {l3, l7}) 0.52 0.74 0.66 (l5, {l3, l5}) 0.55 0.78 0.65 (l4, {l1, l4}) 0.47 0.53 0.51

(l1, {l1, l4}) 0.53 0.74 0.66 (l4, {l4, l9}) 0.55 0.64 0.63 (l3, {l3, l7}) 0.48 0.53 0.51

(l5, {l3, l5}) 0.55 0.74 0.66 (l4, {l3, l4}) 0.57 0.60 0.60 (l4, {l4, l5}) 0.49 0.53 0.51

(l4, {l4, l9}) 0.55 0.74 0.66 (l1, {l1, l3}) 0.60 0.71 0.66 (l8, {l7, l8}) 0.51 0.61 0.57

(l7, {l7, l9}) 0.56 0.74 0.66 (l3, {l2, l3}) 0.67 0.80 0.71 (l5, {l3, l5}) 0.55 0.55 0.56

(l4, {l3, l4}) 0.57 0.74 0.66 (l4, {l2, l4}) 0.72 0.85 0.78 (l6, {l2, l6}) 0.56 0.58 0.56

(l1, {l1, l3}) 0.60 0.74 0.66 (l1, {l1, l6}) 0.72 0.87 0.83 (l5, {l5, l8}) 0.62 0.76 0.72

(l5, {l5, l8}) 0.62 0.74 0.66 (l1, {l1, l2}) 0.75 0.91 0.82 (l4, {l4, l7}) 0.62 0.79 0.75

(l4, {l4, l7}) 0.62 0.74 0.66 (l5, {l2, l5}) 0.75 0.92 0.80 (l1, {l1, l7}) 0.63 0.76 0.72

(l1, {l1, l7}) 0.63 0.74 0.66 (l5, {l5, l6}) 0.75 0.89 0.81 (l5, {l5, l7}) 0.63 0.76 0.72

(l5, {l5, l7}) 0.63 0.74 0.66 (l4, {l4, l6}) 0.76 0.83 0.78 (l1, {l1, l8}) 0.64 0.76 0.72

(l8, {l8, l9}) 0.64 0.74 0.66 (l3, {l2, l3}) 0.67 0.76 0.72

(l1, {l1, l8}) 0.64 0.74 0.66 (l1, {l1, l9}) 0.76 0.84 0.90

(l8, {l3, l8}) 0.64 0.74 0.66 (l5, {l5, l9}) 0.83 1.00 1.00

Note: (a,A) denotes the observation referring to alternative a from menu A such that a is the lottery where the

predictions of both maximal separation (MS) and maximum likelihood (ML) are above the observed choice data

ρ. Those observations for which one of the predictions of MS or ML is above the observed choice data and the

other below are not reported in the table. Then, for each one of the models, the binary menus of lotteries are

ordered from lower to higher observed choice probabilities. Bold entries refer to the cases where MS is closer to

the data and italicized entries refers to those cases where ML is closer to the data.

our analysis. In all three models, the over-estimation of small probabilities is less prob-

lematic for the maximal separation technique, while maximum likelihood deals better

with the over-estimation of large probabilities. We conclude, therefore, that if one is
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interested in forecasting exercises, these results suggest that, to obtain a clear picture

of the overall situation, it may be useful to apply both estimation techniques: maximal

separation and maximum likelihood.

7. Discussion

We close this paper by commenting on three issues surrounding the notion of maximal

separations. We begin by discussing how to select one of the available existing models

by assigning a cost to the parsimony of each model. We then comment on the possibility

of assuming that the model ∆ is not only closed, but convex. Finally, we discuss the

possibility of restricting the space of residual stochastic choice functions, and comment

on possible interpretations of residual behavior.

7.1. Model selection. The analyst may be interested in comparing the explanatory

performance of various models. Clearly, the fraction of data explained in a maximal

separation constitutes an absolute measure of performance. As usual, the absolute

measure of performance is in tension with the idea of over-fitting, i.e., larger models

are explanatorily superior simply because of their size. As a direct example of this

tension, notice that whenever ∆ ⊆ ∆′, the maximal fraction of data explained by

model ∆′ is, independently of ρ, larger than or equal to the maximal fraction of data

explained by model ∆. The natural reaction to this is to consider a penalization of

model ∆ that is monotonically dependent upon the size of the model.28

Notice that the set of all stochastic choice functions can be built as a product of

|D| simplices. In other words, the set of all stochastic choice functions can be seen

as a subset of [0, 1]|O|−|D|. Since all relevant stochastic models have a strictly lower

dimensionality, they all have zero Lebesgue measure in the subspace of all stochastic

choice functions. Hence, any measure based on the Lebesgue volume of these models

would regard all models alike in terms of their size, and would differentiate them only

in terms of the fraction of the data they rationalize.29

28Another approach would entail comparing the completeness of the different models, that is,

the amount of predictive variation rationalized by the model. See Fudenberg, Kleinberg, Liang and

Mullainathan (2019) for a recent formal treatment of the notion of completeness.
29Another normalization that would not discriminate beyond absolute performance is λ∗−λmin

λmax−λmin ,

where λmax and λmin are a models’ maximum and minimum performance values when studying all

possible datasets. Clearly, λmax = 1 for all the models, and it can be easily shown that λmin = 0 for

all the models discussed in this paper.
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An alternative approach, in the spirit of the Akaike information criterion, would

be to consider a cost that depends on the largest value of n such that the model ∆

has non-zero measure in the space [0, 1]n. This line of thought essentially counts the

number of parameters in the model ∆. Considering the models previously analyzed,

the deterministic choice model corresponds to a finite subset of possible datasets, and

hence, does not have a strictly positive dimension. The tremble model involves one

tremble parameter and hence, has dimension 1. The Luce model involves one utility

value for each alternative and, normalizing the sum of utility values, involves as many

parameters as the number of alternatives minus 1. The single-crossing random utility

model involves a probability measure over a subset of T preferences. If all menus are

available, the dimension of this model is T − 1.

7.2. Convex models. We have assumed model ∆ to be closed, a basic property which

guarantees the existence of maximal separations. An obvious further property to be

considered is convexity, especially in relation to mixture models. These models are

common when dealing with heterogeneity at the population level, and they can also

be used to discuss intra-personal heterogeneity. In a mixture model, the researcher

convexifies a set of instances of a base model, allowing different subpopulations to be

explained by different instances of the model. Notice that our methodology directly

enables this type of analysis, since one can simply consider the desired, convexified,

∆ model as the object of analysis. As an example of this approach, see the analysis

of the single-crossing random utility model in section 4.4, which can be understood as

the convex hull of a subset of instances of the deterministic model.

The convexity of ∆ may have useful implications. Given data ρ and model ∆,

consider two separations 〈λ, δ, ε〉 and 〈λ′, δ′, ε′〉, and let α ∈ [0, 1]. Clearly, αλ +

(1 − α)λ′ ∈ [0, 1] and αε + (1 − α)ε′ ∈ SCF, due to the convexity of [0, 1] and SCF.

Whenever model ∆ is convex, we also obtain that αδ + (1 − α)δ′ ∈ ∆, and hence,

α〈λ, δ, ε〉 + (1 − α)〈λ′, δ′, ε′〉 is also a separation, showing the convexity of the set of

all separations. This transforms the search for maximal separations into a convex

optimization problem.

It is important to note, however, that convex models of choice are the exception

rather than the norm. It is immediately obvious, for example, that the deterministic

model is not convex. A mixture of two deterministic choice functions rationalized by

two different preferences will clearly lead to a stochastic choice function that cannot

be rationalized by any other preference. In a similar vein, it is well-known that the



24

Luce model represents another case of a non-convex model (see Gul, Natenzon and

Pesendorfer, 2014). Hence, the assumption of convexity, while not required for our

results, would come with some loss of generality.

7.3. Residual behavior. In our approach to finding the maximal fraction of the data

consistent with the model, we have given the best possible chance to the model by

leaving the space of possible residual behaviors completely unstructured. That is, we

have assumed that residual behavior ε can be selected from the whole set of stochastic

choice functions, SCF. Consequently, as the proof of Proposition 1 shows, a necessary

condition for a separation to be maximal is that residual behavior lies exactly on the

frontier of SCF. In other words, the residual behavior in a maximal separation imposes

that the choice probability for some observations, which we describe as critical, is zero.

On occasions, one may be interested in separations involving less extreme residual

behaviors. That is, one may entertain the possibility of imposing on the space of

allowable residual behaviors a particular minimal structure beyond that of a stochastic

choice function. A possible objective might be to consider the case in which residual

behavior is in some way similar in nature to the model of reference ∆, while allowing

for more flexibility.

A set of minimal assumptions is sufficient to guarantee that the logic behind our

methodology is applicable for considering restricted spaces of residual behavior, RB ⊆
SCF. In particular, we only need to consider that: (i) the space of residual behaviors

is a relaxation of the model, i.e., ∆ ⊆ RB, (ii) the data belong to the space of residual

behaviors, i.e., ρ ∈ RB, and (iii) the space of residual behaviors has some technical

properties similar to those of the space SCF, such as being closed and convex. Un-

der these conditions, one can reformulate the concept of separation, requiring that

〈λ, δ, ε〉 ∈ [0, 1] × ∆ × RB. The logic of Proposition 1 remains valid and a necessary

condition for a separation to be maximal will be that residual behavior lies on the

frontier of RB.

We conclude by highlighting some final comments on the interpretation of residual

behavior. We distinguish three cases. First, consider the situation in which the residual

has the consistency properties that are typical of a noisy structure. To illustrate,

consider that the data ρ are generated exactly by the tremble model using a preference

P and tremble γ, but the analyst initially approaches the data from the perspective

of the deterministic model. The maximal separation will identify the true preference

P and the residual will have a very transparent structure: the optimal alternative in
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menu A according to P is chosen with zero probability, while any other alternative

is chosen with probability 1
|A|−1

. Clearly, the structure of ε is very informative about

the existing noise, and the analyst may wish to reconsider the candidate model for

incorporating such noise into the deterministic model to effectively use the tremble

model.

Secondly, suppose that the residual has consistency properties typical of a competing

instance of the model or of a competing model. To illustrate, consider that the data

ρ are generated by a mixture of preferences P (in larger proportion) and P ′, but the

analyst initially approaches the data from the perspective of the deterministic model.

The maximal separation will identify preference P and the residual will have a very

clear structure: that of preference P ′. Clearly, the structure of ε is very informative

about the existing heterogeneity, and the analyst may wish to reconsider the candidate

model for incorporating such heterogeneity into a mixture model. Similar reasoning

can be applied when the residual resembles not an instance of the model ∆ but an

instance of some other reasonable model ∆′.

Finally, suppose that the residual appears rather inconsistent to the analyst. Here,

a potentially fruitful option would be to apply the maximal separation approach on ε

using some reasonable model of choice, to assess the possibility of making any sense

out of the apparently chaotic behavior ε. That is, try to ascertain whether ε itself can

be understood to a significant extent as the combination of some choice model, and as

another expression of residual behavior.

Appendix A. Proofs

Proof of Proposition 1: Consider first the case where ρ ∈ ∆. Then, 〈1, ρ, ρ〉 is

clearly a maximal separation. Moreover, given that min
(a,A)∈O

ρ(a,A)
δ(a,A)

= 1 if and only if

ρ = δ, the result follows.

Let us now consider the case of ρ 6∈ ∆. We start by claiming that, for a given

δ ∈ ∆, there exist λ ∈ [0, 1) and ε ∈ SCF such that 〈λ, δ, ε〉 is a separation if and only

if λ ≤ min
(a,A)∈O

ρ(a,A)
δ(a,A)

. To prove the ‘only if’ part, assume that 〈λ, δ, ε〉 is a separation.

Then, it must be the case that ρ = λδ + (1 − λ)ε, or equivalently, ρ−λδ
1−λ = ε ≥ 0.

This implies that ρ − λδ ≥ 0 and, ultimately, that λ ≤ ρ
δ
. Hence, it must be that

λ ≤ min
(a,A)∈O

ρ(a,A)
δ(a,A)

, as desired.30 To prove the ‘if’ part, suppose that λ ≤ min
(a,A)∈O

ρ(a,A)
δ(a,A)

.

30Notice that, in dividing by δ, we are using the above-mentioned convention.
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We now prove that 〈λ, δ, ε = ρ−λδ
1−λ 〉 is a separation of data. Since by assumption δ ∈ ∆

and the construction guarantees that ρ = λδ + (1− λ)ε, we are only required to prove

that ε ∈ SCF. We begin by checking that ε(a,A) ≥ 0 holds for every (a,A) ∈ O. To see

this, suppose by contradiction that this is not true. Then, there would exist (b, B) ∈ O
such that ρ(b,B)−λδ(b,B)

1−λ < 0. This would imply that ρ(b, B) − λδ(b, B) < 0 and hence,

that δ(b, B) > 0, with ρ(b,B)
δ(b,B)

< λ ≤ min
(a,A)∈O

ρ(a,A)
δ(a,A)

, which is a contradiction. Finally, it is

also the case that
∑
a∈A

ε(a,A) =
∑
a∈A

ρ(a,A)−λδ(a,A)
1−λ = 1−λ

1−λ = 1 for every A ∈ D. Therefore

ε ∈ SCF and the claim is proved.

Now, the former claim shows that the maximal fraction that can be explained with

model {δ} is min
(a,A)∈O

ρ(a,A)
δ(a,A)

. This argument immediately implies the desired results on

∆, provided that maximal separations exist.

We now show the existence of maximal separations. Given the domain, any separa-

tion 〈λ, δ, ε〉 of ρ is a vector in Rn, with n = 2|O| + 1. We first prove that the set of

separations is a closed subset of Rn. Consider a sequence of separations 〈λt, δt, εt〉∞t=1

and suppose that this sequence converges in Rn. Given the finite-dimensionality and

the fact that ∆ and SCF are closed, we clearly have that limt λt ∈ [0, 1], limt δt ∈ ∆

and limt εt ∈ SCF and it is evident that 〈limt λt, limt δt, limt εt〉 is a separation of ρ.

This proves that the set of separations is closed and, being a subset of [0, 1]n, it is also

bounded and hence, compact. Since the maximal fraction of data explained can be

thought as the result of maximizing, over the set of separations, the projection map

assigning the first component of the separation, i.e., value λ, existence is guaranteed.�

Proof of Proposition 2: Let {λS}S:D|S 6=∅ and P ∈ P satisfy (1) and (2). For every

S such that D|S 6= ∅, denote by DETD|S the deterministic rational stochastic choice

functions defined over the subdomain D|S. Similarly, denote by ρ|S the restriction

of ρ to D|S. We start by proving, recursively, that the maximal fraction of data ρ|S
explained by model DETD|S is equal to λS. Consider any subset S for which D|S = {S}.
In this case, Proposition 1 guarantees that the maximal fraction of data ρ|S explained

by model DETD|S is max
δ∈DETD|S

min
(a,A)∈O|S

ρ|S(a,A)
δ(a,A)

= max
P∈P

min
(a,A)∈O|S

ρ(a,A)
δP (a,A)

= max
P∈P

min
a∈S

ρ(a,S)
δP (a,S)

=

max
P∈P

ρ(mP (S),S)
δP (mP (S),S)

= max
P∈P

ρ(mP (S), S) = max
a∈S

ρ(a, S) = max
a∈S

min
(a,A)∈O|S

ρ(a,A) = λS. Now

suppose that D|S 6= {S} and that the result has been proved for any strict subset of

S with non-empty subdomain. For any a ∈ S, denote by PaS the set of preferences

that rank a above any other alternative in S, i.e., PaS = {P ∈ P : a = mP (S)},
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and by aS the subset of DETD|S generated by preferences in PaS. Trivially, DETD|S =⋃
a∈S

aS =
⋃
a∈S

⋃
P∈PaS

{δP}. Since the only observations for which δP has a non-null value

are those that are in the form (mP (A), A), Proposition 1 guarantees that the maximal

fraction of data ρ|S explained by model DETD|S is max
a∈S

max
P∈PaS

min
A∈D|S

ρ(mP (A), A). Since

P ∈ PaS, we obtain that mP (A) = a whenever a ∈ A and hence, the latter value is

equal to max
a∈S

max
P∈PaS

min
{
{ρ(a,A)}(a,A)∈O|S , {ρ(mP (B), B)}B∈D|S\{a}

}
. This can be ex-

pressed as max
a∈S

min
{
{ρ(a,A)}(a,A)∈O|S , max

P∈PaS
min

B∈D|S\{a}
ρ(mP (B), B)

}
or, equivalently,

as max
a∈S

min
{
{ρ(a,A)}(a,A)∈O|S , min

B∈D|S\{a}
max
P∈PaS

min
C∈D|B

ρ(mP (C), C)
}

. Given that a 6∈ B,

it is clearly the case that max
P∈PaS

min
C∈D|B

ρ(mP (C), C) = max
P∈P

min
C∈D|B

ρ(mP (C), C) and, by

Proposition 1 and the structure of deterministic stochastic choice functions, the latter

is the maximal fraction of data ρ|B explained by model DETD|B , which is equal to λB by

hypothesis. Hence, the maximal fraction of data ρ|S explained by model DETD|S must

be also equal to λS, as desired. As a corollary, we have that for the maximal fraction

of the data explained by the deterministic model is λX and from the construction, the

claim follows. �

Proof of Proposition 3: Since the proof has the same structure as the proof of

Proposition 2, we skip some of the steps and use the same notation as before. We

start by (recursively) proving that the maximal fraction of data ρ|S explained by the

collection of stochastic choice functions in TrembleD|S with a fixed degree of tremble

γ, which we denote by TrembleD|S(γ), is equal to λS(γ). We start with any subset S

for which D|S = {S}. The maximal fraction of data ρ|S explained by TrembleD|S(γ) is

max
δ∈TrembleD|S (γ)

min
(a,A)∈O|S

ρ|S(a,A)
δ(a,A)

= max
P∈P

min
{ ρ(mP (S),S)
δ[P,γ](mP (S),S)

, { ρ(b,S)
δ[P,γ](b,S)

}b∈S\{mP (S)}
}

=

max
P∈P

min
{ |S|ρ(mP (S),S)

(1−γ)|S|+γ , { |S|ρ(b,S)
γ
}b∈S\{mP (S)}

}
= max

a∈S
min

{ |S|ρ(a,S)
(1−γ)|S|+γ , {

|S|ρ(b,S)
γ
}b∈S\{a}

}
=

max
a∈S

min
{
{ |A|ρ(a,A)

(1−γ)|A|+γ}(a,A)∈O|S , {
|A|ρ(b,A)

γ
}(b,A)∈O|S

b 6=a
} = λS(γ). Whenever D|S 6= {S},

we can write the maximal fraction of data ρ|S explained by model TrembleD|S(γ)

as max
a∈S

max
P∈PaS

min
{
{ |A|ρ(mP (A),A)

(1−γ)|A|+γ }A∈D|S , {
|A|ρ(b,A)

γ
}(b,A)∈O|S ,b 6=mP (A)}. Notice that we can

decompose { |A|ρ(mP (A),A)
(1−γ)|A|+γ }A∈D|S into { |A|ρ(a,A)

(1−γ)|A|+γ}(a,A)∈O|S and { |B|ρ(mP (B),B)
(1−γ)|B|+γ }B∈D|S\{a} .

Similarly, we can decompose { |A|ρ(b,A)
γ
}(b,A)∈O|S ,b 6=mP (A) into components { |A|ρ(b,A)

γ
}(b,A)∈O|S

b 6=a∈A

and { |B|ρ(b,B)
γ
}B∈D|S\{a}
b 6=mP (B)

. By the same reasoning as in the proof of Proposition 2,
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consideration of both { |B|ρ(mP (B),B)
(1−γ)|B|+γ }B∈D|S\{a} and { |B|ρ(b,B)

γ
}B∈D|S\{a}
b6=mP (B)

yields the value

{λB(γ)}B∈D|S\{a} . This proves the claim. From Proposition 2, the maximal separa-

tions for model TrembleD(γ) explain a fraction λX(γ) of the data. Since TrembleD =

∪γTrembleD(γ), one simply needs to consider the value γ∗ maximizing λX(γ) and the

result follows immediately from Proposition 1. �

Proof of Proposition 4: To prove the ‘if’ part let δL ∈ Luce and suppose that

there exists {(ai, Ai)}Ii=1 ⊆ OδL such that
⋃I
i=1{ai} =

⋃I
i=1 Ai. From Proposition

1, the maximal fraction that can be explained by model {δL} is min
(a,A)∈O

ρ(a,A)
δL(a,A)

. As-

sume, by way of contradiction, that δL is not part of a maximal separation for the

Luce model. Therefore, there exists 〈λ∗, δ∗L, ε∗〉 such that, for every i ∈ {1, 2, . . . , I},
ρ(ai,Ai)
δL(ai,Ai)

= min
(a,A)∈O

ρ(a,A)
δL(a,A)

< λ∗ = min
(a,A)∈O

ρ(a,A)
δ∗L(a,A)

≤ ρ(ai,Ai)
δ∗L(ai,Ai)

. For every i ∈ {1, 2, . . . , I},

we have that ρ(ai, Ai) > 0 and hence, since the ρ/δL ratio is minimized at OδL , it must

be that δL(ai, Ai) > 0, making ρ(ai,Ai)
δL(ai,Ai)

< ρ(ai,Ai)
δ∗L(ai,Ai)

equivalent to δ∗L(ai, Ai) < δL(ai, Ai).

Let {δ′vn}
∞
n=1 and {δun}∞n=1 be two sequences of strictly positive Luce stochastic choice

functions that converge to δ∗L and δL, respectively. Select an m sufficiently large

that δ∗L(ai, Ai) < δum(ai, Ai) holds for every i ∈ {1, 2, . . . , I}. Given m, now select

an m′ sufficiently large that, for every i ∈ {1, 2, . . . , I}, δ′vm′ (ai, Ai) < δum(ai, Ai)

holds. We then have that 1∑
x∈Ai

vm′ (x)

vm′ (ai)

=
vm′ (ai)∑
x∈Ai

vm′ (x)
= δ′vm′ (ai, Ai) < δum(ai, Ai) =

um(ai)∑
x∈Ai

um(x)
= 1∑

x∈Ai
um(x)
um(ai)

, thus guaranteeing, for every i ∈ {1, 2, . . . , I}, the ex-

istence of one alternative x̄i ∈ Ai \ {ai} such that
vm′ (ai)
vm′ (x̄i)

< um(ai)
um(x̄i)

. Given that⋃I
i=1{ai} =

⋃I
i=1Ai, there exists a subcollection {aih}Hh=1 of {ai}Ii=1 with the fol-

lowing properties: (i) aih+1
∈ Aih , with h = 1, . . . , H − 1, and ai1 ∈ AiH , and

(ii)
vm′ (aih )

vm′ (aih+1
)
<

um(aih )

um(aih+1
)

with h = 1, . . . , H − 1 and
vm′ (aiH )

vm′ (ai1 )
<

um(aiH )

um(ai1 )
. Obviously,

1 =
vm′ (aiH )

vm′ (ai1 )
ΠH−1
h=1

vm′ (aih )

vm′ (aih+1
)
<

um(aiH )

um(ai1 )
ΠH−1
h=1

um(aih )

um(aih+1
)

= 1, which is a contradiction. This

concludes the ‘if’ part of the proof.

To prove the ‘only if’ part, suppose that δL belongs to a maximal separation for

the Luce model. Let [x] be the set of all alternatives x′ ∈ X for which there exists a

sequence of observations {(bj, Bj)}Jj=1, with: (i) x = b1 and x′ ≡ bJ+1 ∈ BJ , and (ii) for

every j ∈ {1, 2, . . . , J}, δL(bj, Bj) > 0 and δL(bj+1, Bj) > 0. If there is no alternative

for which such a sequence exists, let [x] = {x}. Clearly, [·] defines equivalence classes

on X. Whenever there exists A ∈ D with {x, y} ⊆ A and δL(x,A) > δL(y, A) = 0,
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we write [x] � [y]. We claim that � is an acyclic relation on the set of equivalence

classes. To see this, assume, by contradiction, that there is a cycle of pairs {aq, bq},
menus Aq ⊇ {aq, bq}, and equivalence classes [xq], q ∈ {1, 2, . . . , Q}, such that: (i)

δL(aq, Aq) > δL(bq, Aq) = 0 for every q ∈ {1, 2, . . . , Q}, (ii) aq ∈ [xq] for every q ∈
{1, 2, . . . , Q}, and (iii) bq ∈ [xq+1] for every q ∈ {1, 2, . . . , Q− 1} and bQ ∈ [x1]. We can

then consider a sequence of stochastic choice functions {δun}∞n=1 that converges to δL.

Since bq and aq+1 belong to the same equivalence class [xq+1], either bq = aq+1 or there

exists a sequence of observations {(dj, Dj)}Jj=1 with: (i) bq = d1 and aq+1 = dJ+1 ∈ DJ ,

and (ii) for every j ∈ {1, 2, . . . , J}, δL(dj, Dj) > 0 and δL(dj+1, Dj) > 0 (and the same

holds for aQ and b1). Define the strictly positive constant Kq = 1 whenever bq = aq+1,

and Kq = 1
2
ΠJ
j=1

δL(dj ,Dj)

δL(dj+1,Dj)
otherwise (with a similar definition for KQ relating aQ and

b1). If bq = aq+1, then trivially un(bq) = un(aq+1) for every n. Otherwise, for an

n sufficiently large in the sequence {un}∞n=1, we have that un(bq)

un(aq+1)
= ΠJ

j=1
un(dj)

un(dj+1)
=

ΠJ
j=1

δum (dj ,Dj)

δum (dj+1,Dj)
≥ Kq. Hence, in any case, un(bq)

Kq
≥ un(aq+1) holds for any sufficiently

large n (and the same holds for bQ and a1). Also, since δL(aq, Aq) > δL(bq, Aq) = 0 for

every q ∈ {1, 2, . . . , Q}, we can find an n sufficiently large that un(aq) >
un(bq)

Kq
. Hence,

we can find an m that is sufficiently large that um(a1) > um(b1)
K1

≥ um(a2) > um(b2)
K2

≥
· · · ≥ um(aQ) >

um(bQ)

KQ
≥ um(a1). This is a contradiction which proves the acyclicity

of �. We can then denote the equivalence classes as {[xe]}Ee=1, where [xe] � [xe′ ]

implies that e < e′. For an equivalence class [xe], define the vector u[xe] ∈ U such that

u[xe](y) = 0 if y 6∈ [xe] and,
u[xe](y)

u[xe](y
′)

= δL(y,A)
δL(y′,A)

whenever y, y′ ∈ [xe], δL(y, A) > 0 and

δL(y′, A) > 0. This is clearly well-defined due to the structure of Luce stochastic choice

functions. Now consider the sequence of Luce stochastic choice functions {δvn}∞n=1 given

by vn = (1−
∑E

e=2( 1
2e

)n)u[x1] +
∑E

e=2( 1
2e

)nu[xe], which clearly converges to δL. Consider

the following three collections of observations O1, O2 and O3. O1 is composed of

all observations (a,A) ∈ O such that A ⊆ [a]. O2 is composed of all observations

(a,A) ∈ O \ O1, such that b ∈ A, a ∈ [ai] and b ∈ [aj] imply i ≥ j. O3 is composed

of observations in O \ (O1 ∪ O2). Notice that, for an n sufficiently large, for every

(a,A) ∈ O1 we have that ρ(a,A)
δvn (a,A)

= ρ(a,A)
δL(a,A)

and for every (a,A) ∈ O2 we have that
ρ(a,A)
δvn (a,A)

> ρ(a,A)
δL(a,A)

. Also, for an n sufficiently large, (1
2
)n < min{ρ(a,A) : a ∈ A ∈ D},

and hence (a,A) ∈ O3 implies that ρ(a,A)
δvn (a,A)

≥ ρ(a,A)

( 1
2

)m
> 1. In this case, we can fix an

m sufficiently large that, from Proposition 1, min
(a,A)∈O

ρ(a,A)
δvm (a,A)

= min
(a,A)∈O1∪O2

ρ(a,A)
δvm (a,A)

≥
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min
(a,A)∈O1∪O2

ρ(a,A)
δL(a,A)

≥ min
(a,A)∈O

ρ(a,A)
δL(a,A)

.31 Indeed, since δL belongs to a maximal separation

of the model of Luce, it must be that min
(a,A)∈O

ρ(a,A)
δvm (a,A)

= min
(a,A)∈O

ρ(a,A)
δL(a,A)

, and hence O1 is

non-empty, with Oδvm ⊆ OδL ⊆ O1.

Assume, by way of contradiction, that there is no subcollection {(ai, Ai)}Ii=1 ⊆ OδL
such that

⋃I
i=1{ai} =

⋃I
i=1Ai. Then, for every subcollection {(ai, Ai)}Ii=1 ⊆ Oδvm it

must also be that
⋃I
i=1{ai} 6=

⋃I
i=1Ai. Hence, there must exist at least one alterna-

tive x such that x 6= a for every (a,A) ∈ Oδvm and x ∈ A for some (a,A) ∈ Oδvm .

Consider the segment α1x + (1 − α)vm, with α ∈ [0, 1]. Select the maximal sepa-

ration in this segment, which can be identified as follows. Partition the set of ob-

servations into two classes O′ = {(a,A) ∈ O, a 6= x ∈ A} and O′′ = O \ O′

and then select the Luce utilities defined by the unique value ᾱ ∈ [0, 1] that solves

min
(a,A)∈O′

ρ(a,A)
δα1x+(1−α)vm (a,A)

= min
(a,A)∈O′′

ρ(a,A)
δα1x+(1−α)vm (a,A)

. Notice that, given the structure of

the Luce model, the left-hand ratio increases with α, continuously and strictly, ap-

proaching infinity. Similarly, the right-hand ratio weakly decreases with α continu-

ously. Notice also that, for α = 0, the left-hand ratio is strictly below the right-hand

ratio. This is because there exists at least one observation on the left-hand side that

belongs to Oδvm . Thus, ᾱ must exist and Proposition 1 guarantees that this provides

the maximal separation in the segment. Then, consider the vector of Luce utilities

v = ᾱ1x + (1 − ᾱ)vm. If alternative x is present in all the menus in Oδvm , then

min
(a,A)∈O

ρ(a,A)
δv(a,A)

> min
(a,A)∈O

ρ(a,A)
δvm (a,A)

= min
(a,A)∈O

ρ(a,A)
δL(a,A)

, thus contradicting the maximality of

δL. If x is not present in some menu of Oδvm , it must be the case that Oδv ( Oδvm
and min

(a,A)∈O

ρ(a,A)
δv(a,A)

= min
(a,A)∈O

ρ(a,A)
δL(a,A)

. Given the finiteness of the data, we can repeat the

same exercise for δv and, eventually, contradict the optimality of δL. This concludes

the proof. �

Proof of Proposition 5: We start by proving that λT is lower or equal than the

maximal fraction of the data that can be explained by SCRUM. The construction

guarantees that 1 ≥ λT ≥ λT−1 ≥ · · · ≥ λ1 ≥ 0. Whenever λT = 0, the result is

immediate. Assume that λT ∈ (0, 1). We prove that there exists a separation of ρ of

the form 〈λT , δµT ,
ρ−λT δµT

1−λT
〉. Since the construction guarantees that δµT ∈ SC, we only

need to prove that ε =
ρ−λT δµT

1−λT
∈ SCF. To see this, consider (a,A) ∈ O and denote by

i and ī the integers of the first and last preferences in P ′, such that a is the maximal

31This shows, in addition, that there is always a strictly positive instance of Luce that is maximal.
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element in A. The construction guarantees that ρ(a,A) ≥ λī−λi−1 = λT
λī−λi−1

λT
. Now,

the recursive equations can be written as µT (Pi) =
λPi−λPi−1

λT
for every i ∈ {1, 2, . . . , T},

with λ0 = 0 and hence, ρ(a,A) ≥ λT
∑ī

i=i µT (Pi) = λT δµT (a,A). This implies that

ε(a,A) ≥ 0. Notice also that
∑

a∈A ε(a,A) =
∑

a∈A
ρ(a,A)−λT δµT (a,A)

1−λT
= 1−λT

1−λT
= 1, thus

proving that ε ∈ SCF. This shows the claim and, hence, the desired inequality. Finally,

suppose that λT = 1. In this case, by noticing again that the construction guarantees

that ρ = δµT ∈ SC, the desired inequality follows.

We now show that λT is greater or equal than the maximal fraction of the data that

can be explained by SCRUM. To show this let 〈λ, δµ, ε〉 be a separation for SCRUM.

We need to show that λT ≥ λ. We proceed recursively to show that λi ≥
∑i

j=1 λµ(Pj)

holds, and hence, λT ≥
∑T

j=1 λµ(Pj) = λ, as desired. Let i = 1 and A′ be a

menu solving min
A∈D

ρ(mP1(A), A). Hence, λ1 − λµ(P1) = ρ(mP1(A′), A′) − λµ(P1) ≥
ρ(mP1(A′), A′)− λ

∑
j:mPj (A′)=mP1

(A′) µ(Pj). By the definition of SCRUMs, the last ex-

pression can be written as ρ(mP1(A′), A′) − λδµ(mP1(A′), A′), or equivalently as (1 −
λ)ε(mP1(A′), A′). Since ε ∈ SCF, the latter expression must be positive, thus proving the

desired result. Suppose that the inequality is true for every Pj with j < i. We now prove

this for Pi. Let Ā be a menu solving minA∈D[ρ(mPi(A), A) + maxj:j≤i,mPj (A)6=mPi (A) λj].

Then, we have ρ(mPi(Ā), Ā) = λδµ(mPi(Ā), Ā)+(1−λ)ε(mPi(Ā), Ā) ≥ λδµ(mPi(Ā), Ā) =

λ
∑

P :mP (Ā)=mPi (Ā) µ(P ). If it is the case that {P : mP (Ā) = mPi(Ā)} ⊇ {P1, P2, . . . , Pi},
then clearly λi = ρ(mPi(Ā), Ā) ≥ λ

∑
P :mP (Ā)=mPi (Ā) µ(P ) =

∑i
j=1 λµ(Pj) and we have

concluded the induction argument. Otherwise, the single-crossing condition guar-

antees that there exists j̄ ∈ {1, . . . , i − 1} such that {P : mP (Ā) = mPi(Ā)} ⊇
{Pj̄+1, Pj̄+2, . . . , Pi} and ρ(mPi(Ā), Ā) ≥

∑i
j=j̄+1 λµ(Pj). In this case, the induction

hypothesis also guarantees that λj̄ ≥
∑j̄

j=1 λµ(Pj). By combining these two inequali-

ties, we are able to conclude that λi ≥
∑i

j=1 λµ(Pj) and the induction step is complete.

This implies, in particular, that λ ≤ λT .

By combining the above two claims, we have shown that 〈λT , δµT ,
ρ−λT δµT

1−λT
〉 is a

maximal separation for SCRUM, which concludes the proof. �

Appendix B. Examples

We first propose a simple example of a stochastic choice function, and derive the

maximal separations for all the models studied in Section 4, we then use another

example to show that the maximal separations for the deterministic model and the

tremble model do not necessarily identify the same preference relations, and, finally,
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we propose a particular data-generating process and use the tremble model to illustrate

our conjecture on the differences between maximal separation and maximum likelihood

in over-estimating choice probabilities.

Table 5 reports a stochastic choice function ρ defined on every non-singleton subset

of X = {x, y, z}, i.e., D = {{x, y, z}, {x, y}, {x, z}, {y, z}}. Note that this stochastic

choice function involves behavior rather unstructured, in the sense that it does not

satisfy weak stochastic transitivity.

Table 5. A stochastic choice function ρ

x y z

{x, y, z} 0.15 0.6 0.25

{x, y} 0.25 0.75

{x, z} 0.7 0.3

{y, z} 0.4 0.6

We start with the deterministic model. We can first calculate the maximal fraction

for every set for which D|S = {S}, i.e., the binary sets:

λ{x,y} = max{ρ(x, {x, y}), ρ(y, {x, y})} = 0.75,

λ{x,z} = max{ρ(x, {x, z}), ρ(z, {x, z})} = 0.7, and

λ{y,z} = max{ρ(y, {y, z}), ρ(z, {y, z})} = 0.6.

We can then proceed to assign a value to menu X, for which we first analyze

the alternatives in X one-by-one. For alternative x, we compute the minimum of{
{ρ(x, {x, y}), ρ(x, {x, z}), ρ(x,X)}, λ{y,z}

}
= ρ(x, {x, y, z}) = 0.15. For alternative y,

the minimum of
{
{ρ(y, {x, y}), ρ(y, {y, z}), ρ(y,X)}, λ{x,z}

}
= ρ(y, {y, z}) = 0.4 is the

relevant value. Finally, for alternative z we are required to compute the minimum of{
{ρ(z, {x, z}), ρ(z, {y, z}), ρ(z,X)}, λ{x,y}

}
= ρ(z, {x, y, z}) = 0.25. Thus, we get

λX = max{0.15, 0.4, 0.25} = 0.4.

Notice that the last value is obtained with alternative y. In subset X \ {y}, the

alternative determining the value λ{x,z} is x. Hence, the second part of Proposition 2

guarantees that δP with yPxPz conforms to a maximal separation of ρ. From λX = 0.4,

one can immediately obtain the corresponding residual behavior as ε = ρ−0.4δP
0.6

, i.e.,
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ε(x,X) = 1
4
, ε(y,X) = 1

3
, ε(x, {x, y}) = 5

12
, ε(x, {x, z}) = 1

2
, and ε(y, {y, z}) = 0. To

close the discussion of this example, notice from the residual behavior that the frontier

of SCF is reached at (y, {y, z}). This is precisely the observation where the identified

instance δP fails most seriously. In turn it determines the maximal fraction of data

explained by DET, i.e., ρ(y,{y,z})
δP (y,{y,z}) = 0.4

1
= 0.4.

We now illustrate the treatment of the tremble model. Replicating the steps taken

in the analysis of DET, we conclude that yPxPz is the optimal preference relation for

every given value of γ.32 In order to find the optimal value of γ, note that there are only

two possible critical observations, depending on the value of γ. When γ is low, we know

from the study of the deterministic case that the critical observation is (y, {y, z}), with

a ratio ρ to δ equal to 0.4
1−γ+ γ

2
. When γ is high the critical observation is (x, {x, y, z}),

with a ratio ρ to δ equal to 0.15
γ
3

. By noticing that the first ratio is increasing and starts

at a value below the second ratio, which is decreasing, it follows that the maximal

fraction of data explained by the optimal tremble can be found by equating these two

ratios, which yields γ∗ = 0.72. Hence, the maximal fraction of data explained is 0.625,

obtained with the trembling stochastic choice function δ[P,0.72] and residual behavior

ε =
ρ−0.625δ[P,0.72]

0.375
, i.e., ε(x,X) = 0, ε(y,X) = 11

15
, ε(x, {x, y}) = 1

15
, ε(x, {x, z}) = 4

5
, and

ε(y, {y, z}) = 0. To conclude, notice that the ability of the tremble model to explain the

data reaches its limits as a result of the tension created by the two critical observations,

(y, {y, z}) and (x, {x, y, z}).
As for the model of Luce, consider the Luce utilities u = (1

3
, 1

3
, 1

3
). The value

min
(a,A)∈O

ρ(a,A)
δu(a,A)

= 0.45 is obtained only for observation (x, {x, y, z}). Since {x, y, z} \

{x} = {y, z} is non-empty, we can select one of the alternatives in {y, z}, say y, and

move the utility values within the segment α(0, 1, 0) + (1 − α)u = (1−α
3
, 1+2α

3
, 1−α

3
).

In order to select the appropriate value of α, we consider the observations (a,A)

with a 6= y ∈ A and the observations (y, A). Among the former, the minimal ra-

tio of the data to the Luce probabilities is obtained for (x, {x, y, z}), with value
0.45
1−α . In the latter, the minimal ratio is reached at (y, {y, z}), with value 0.4(2+α)

1+2α
.

Equation 0.45
1−α = 0.4(2+α)

1+2α
yields ᾱ = 1

4
, which leads to v = (1

4
, 1

2
, 1

4
). The value

min
(a,A)∈O

ρ(a,A)
δv(a,A)

= 0.6 is obtained for pairs {(x, {x, y, z}), (z, {x, z}), (y, {y, z})}. Notice

that the critical observations of δv have the cyclical structure described by Proposi-

tion 4, i.e., {x, y, z} ∪ {x, z} ∪ {y, z} = {x} ∪ {z} ∪ {y} and, as a result, the fraction

32In an example below we show that this is not necessarily the case in general.
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of data explained by the model of Luce cannot be increased further. We have then

found the maximal separation 〈λ∗, δ∗L, ε∗〉, with δ∗L = δv, λ
∗ = min

(a,A)∈O

ρ(a,A)
δ∗L(a,A)

= 0.6, and

ε∗ =
ρ−λ∗δ∗L

1−λ∗ , that is ε∗(x,X) = 0, ε∗(y,X) = 3
4
, ε∗(x, {x, y}) = 1

8
, ε∗(x, {x, z}) = 1, and

ε∗(y, {y, z}) = 0.

We now illustrate how Proposition 5 works in the example of Table 5, with the

set of single-crossing preferences zP1yP1x, yP2zP2x, yP3xP3z and xP4yP4z. We start

with P1. The maximal fraction of data explained by P1 is λ1 = min
A⊆X

ρ(mP1(A), A) =

min{ρ(z,X), ρ(y, {x, y}), ρ(z, {x, z}), ρ(z, {y, z})} = min{0.25, 0.75, 0.3, 0.6} = 0.25,

where trivially µ1(P1) = 1. We then consider preference P2, where we have that λ2 =

min{ρ(y,X)+λ1, ρ(y, {x, y}), ρ(z, {x, z}), ρ(y, {y, z})+λ1} = min{0.6+0.25, 0.75, 0.3, 0.4+

0.25} = 0.3 with µ2(P1) = λ1

λ2
= 5

6
and µ2(P2) = 1

6
. For preference P3, we have that

λ3 = min{ρ(y,X) + λ1, ρ(y, {x, y}), ρ(x, {x, z}) + λ2, ρ(y, {y, z}) + λ1} = min{0.6 +

0.25, 0.75, 0.7 + 0.3, 0.4 + 0.25} = 0.65, with µ3(P1) = λ2

λ3
µ2(P1) = 5

13
, µ3(P2) =

λ2

λ3
µ2(P2) = 1

13
and µ2(P3) = 7

13
. Finally, we have that λ4 = min{ρ(x,X)+λ3, ρ(x, {x, y})+

λ3, ρ(x, {x, z}) + λ2, ρ(y, {y, z}) + λ1} = min{0.15 + 0.65, 0.25 + 0.65, 0.7 + 0.3, 0.4 +

0.25} = 0.65 and hence µ4 = µ3. Thus, we conclude that the maximal fraction of

the data that can be explained by SCRUM is 0.65, with maximal SCRUM δµ4 and

residual behavior ε(x,X) = 3
7
, ε(y,X) = 4

7
, ε(x, {x, y}) = 5

7
, ε(x, {x, z}) = 1, and

ε(y, {y, z}) = 0, with critical observations (x,X), (z, {x, z}) and (y, {y, z}). Note that

the example illustrates that using a superset of preferences does not necessarily lead

to a strict improvement in the goodness of fit.

We now provide an example to illustrate that the deterministic model and the trem-

ble model do not necessarily identify the same preference relations.

Table 6. PDET and PTremble

x y z

{x, y, z} 0.39 0.55 0.06

{x, y} 0.6 0.4

{x, z} 0.95 0.05

{y, z} 0.95 0.05

Repeating the above logic, it is easy to see that the optimal preference relation

for the deterministic model is yPDETxPDETz, while the one for the tremble model is
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xPTrembleyPTremblez with a tremble of 30/137.

Finally, in Section 6 we conjectured that, given the nature of maximal separations,

we can expect these to perform better in the over-estimation of low observed choice fre-

quencies, while maximum likelihood may perform better on average. We then saw this

conjecture reflected in the data. Here, we use a simple example involving a particular

data-generating process and the tremble model to illustrate the content and intuition

of our conjecture more formally, and leave its general development for future research.

Suppose that the individual has a preference P , and consider a set of binary menus

mi = {xi, yi} where xiPyi. The data-generating process involves the maximization of

P except for a small menu-dependent error εi of choosing alternative yi.

The log-likelihood of the data with respect to the tremble model is
∑

i(1−εi) log(1−
γ
2
) +

∑
i εi log γ

2
, and its maximization leads to

1− γ
2

γ
2

=
∑
i(1−εi)∑
i εi

= 1−ε̄
ε̄

, where ε̄ is the

average observed mistake. That is, maximum log-likelihood averages out the mistakes

observed across different menus, suggesting the tremble γML = 2ε̄ and consequently,

a choice probability of the inferior alternative equal to ε̄. Now consider the maximal

separation of data. For a given tremble γ, the only potentially critical observations are

those in which the mistake is greatest or least, that is either maxi εi or mini εi. In the

first case, the superior alternative has been chosen with probability 1−maxi εi and the

estimated tremble model will, by maximal separation, over-estimate this probability.

Obviously, the superior alternative in any other menu will be less over-estimated and

cannot be critical. In the second case, likewise, the inferior alternative has been chosen

with probability mini εi and its maximal separation specification will over-estimate it

to a greater degree than any other inferior alternative in the remaining menus. In

order to find the maximal separation, we need to equalize these two observations, that

is
1− γ

2
γ
2

= 1−maxi εi
mini εi

.

For most data-generating processes, e.g. any symmetric distribution of mistake prob-

abilities, the following condition holds: 1−maxi εi
mini εi

> 1−ε̄
ε̄

. Whenever this happens, the

estimation of maximal separation will provide an estimated tremble γMS < γML, and

will therefore better accommodate the most extreme observations. In terms of out-

of-sample predictions, the same logic applies. Consider a new menu with a mistake

probability equal to ε. If γMS < γML, there are three cases of interest: (i) ε < γMS

2
,

(ii) γMS

2
< ε < γML

2
and (iii) ε > γML

2
. In the first and third cases, the estimations

fail in a similar fashion. That is, they both over-estimate the choice probability of the
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inferior alternative (in case (i)) or the choice probability of the superior alternative (in

case (iii)). Clearly, maximal separation does a better job in the first case, where the

data are scarce (the relevant alternative is inferior), while maximum likelihood does a

better job in the latter cases, and also on average.

Appendix C. Empirical application: further considerations

In this section we report on the application of the maximal separation approach to

random expected utility, and the out-of-sample results involving the 3- and 5-option

menus.

The random expected utility (REU) of Gul and Pesendorfer (2006) is a key reference

in the stochastic treatment of risk preferences. Here we discuss how to use Proposition

1 in order to obtain its maximal separation using our experimental dataset.

For the sake of consistency throughout the analysis in this paper, we impose the re-

quirement that all the relevant expected utility preferences be linear orders. Secondly,

given that we are working with binary menus, we can understand each particular in-

stance of the REU as a probability distribution over the set of all preferences satisfying

the standard properties of independence and first order stochastic dominance. Notice

that, in our setting: (i) independence requires that liPlj if and only if li+4Plj+4 for

i, j ∈ {2, 3, 4, 5}, and (ii) first order stochastic dominance requires that l5Pl9. Thus,

an instance of REU is merely a probability distribution over the set of linear orders

satisfying these conditions.

We can then use Proposition 1 to explain how the maximal separation of the data for

REU can be obtained. Consider, first, a case of independence, say, l4Pl5 if and only if

l8Pl9. This leads to the linearity property of REU where δ(l4, {l4, l5}) = δ(l8, {l8, l9}).
However, since ρ(l4, {l4, l5}) = 0.49 and ρ(l8, {l8, l9}) = 0.64, this is not observed in

the data. Finding the instance of REU that is closest to these data implies finding a

value 0.49 < x < 0.64 such that 0.49
x

= 1−0.64
1−x , which leads to x = 0.576. Then, setting

δ(l4, {l4, l5}) = δ(l8, {l8, l9}) = 0.576 gives a ρ/δ ratio of 0.85, which means that the

maximal separation can explain no more than 85% of the data. One can check that

the other violations of independence are less severe, and hence the bound imposed by

independence is 0.85. Now consider the implications of stochastic dominance. This

requires that, for every instance of REU, it must be that δ(l5, {l5, l9}) = 1. However,

we observe that ρ(l5, {l5, l9}) = 0.83, thus yielding a ρ/δ ratio of 0.83. It turns out,
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therefore, that this ratio determines the goodness of fit measure of REU in our dataset.

Clearly, the fraction of the data explained increases with respect to that explained

when using CRRA expected utilities, since the latter involve only a subset of expected

utilities.

Since REU has no uniqueness in a finite domain, one can find multiple instances of

the model for which 83% of the data are explained. We now construct one such in-

stance. Start with the set of lotteries {l3, l5, l7, l8, l9} and select the following four linear

orders over it: (i) l8P1l3P1l7P1l5P1l9, (ii) l5P2l8P2l9P2l7P2l3, (iii) l3P3l5P3l7P3l9P3l8 and

(iv) l5P4l9P4l7P4l3P4l8. Notice that they all place l5 at the top of l9, and hence any

RUM using them will satisfy stochastic dominance. Notice, also, that the independence

relationship involving the lotteries l3, l5, l7 and l9 is always respected. Assign to the

four linear orders the probabilities pq, p(1−q), (1−p)q and (1−p)(1−q), respectively.

For each of these four preferences, consider two linear orders, the one that places l1 at

the top and the one that places l1 at the bottom, and assign to each of them the con-

ditional probabilities r and 1− r, respectively. For each of these eight preferences, we

now place l4 either at the top or at the bottom, while respecting independence. That

is, for the preferences constructed on the basis of P1 and P2, independence requires

that l4 must be above l3 and l5 and hence, we place it at the top. Similarly, for the

preferences constructed on the basis of P3 and P4, we place l4 at the bottom. Finally,

for each of these 8 preferences, create 4 preferences that place l2 and l6 at the top, in

both orders, and l2 and l6 at the bottom, in both orders. Notice that this respects

independence for any pair associated with l2 and l6. Assign to them the conditional

probabilities ts, t(1− s), (1− t)s, (1− t)(1− s). A direct application of Proposition 1

allows us to find values of these parameters p, q, r, s, t which yield the maximal REU

separation value 0.83, using the 32 expected utility linear orders described. For in-

stance, p = 0.565, q = 0.473, r = 0.705, s = 0.2, t = 0.5. The nature of the residual

stochastic choice function follows directly from this construction and Proposition 1.

Our experimental dataset involved the choices from 2-, 3- and 5-option menus. In

the main text, we have focused on the binary menus, since we have a relatively large

number of data points for each binary menu; that is, about 87 choices for each of

the 36. In contrast, each participant was confronted with 36 out of the possible 84

menus of 3 lotteries and 36 out of the possible 126 menus of 5 lotteries, all randomly

selected without replacement. This gives an average of 37 (25) observations in the
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3- and 5-option menus, respectively, which means markedly fewer data points per

menu. In this appendix, we use the data pertaining to the 3- and 5-option menus to

perform another out-of-sample exercise. We take the estimated models for maximal

separation and maximum likelihood using the binary data reported in Table 3 and

follow the methodology adopted in Section 6, evaluating the predictions of these models

and techniques using the observations from the non-binary menus. As in the main

text, we focus on those observations in which both maximal separation and maximum

likelihood over-estimate the observed choice frequencies, and evaluate the probability

of the maximal separation prediction being closer to the data than the maximum

likelihood prediction. Reporting the results for each observation, as in Table 4, is

unfeasible, since there are now far too many observations.33

Table 7. Summary Statistics for the Forecasting Results for the 3- and

5-Option Menus

Tremble Luce SCRUM-CRRA

First quintile 100% 88% 59%

Second quintile 97% 78% 68%

Third quintile 46% 67% 80%

Fourth quintile 0% 34% 82%

Fifth quintile 0% 14% 49%

Average 49% 56% 68%

Table 7 reports some summary statistics. Focusing on those observations for which

both maximal separation and maximum likelihood over-estimate the observed choice

frequencies, and ordering the observations from lower to higher observed choice fre-

quencies, the table reports, by quintiles and on average, the frequency with which

maximal separation is closer than maximum likelihood to the data. We see that, in

general, maximal separation is better than maximum likelihood at over-estimating low

observed choice frequencies. This is particularly true in the case of Tremble and Luce,

but also in SCRUM-CRRA when comparing the first quintile against the fifth one.

We also see that, on average, maximal separation does a remarkably good job: it is

closer to the observed choices than maximum likelihood in 49%, 56%, and 68% of all

the over-estimated cases. This may have to do with the fact that, in larger menus, the

33We provide all the results in the online appendix.
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observed choice probabilities are generally smaller, and thus better accommodated by

maximal separation. However, given the small number of observations for the 3- and

5-option menus, these conclusions should be taken with a grain of salt.

Appendix D. Inconsistency indices

Starting with Afriat (1973), there is a literature on measuring deviations of actual

behavior with respect to the standard, deterministic, rational choice model. Formally,

an inconsistency index can be defined as a mapping I : SCF → R describing the

inconsistency of a dataset ρ ∈ SCF with the standard deterministic model, that is when

the reference model is set as ∆ = DET. Most of the existing inconsistency indices are

obtained throughout the minimization of a loss function.34 We can then analyze the

inconsistency index emerging from the maximal separation technique. Using the loss

function discussed in Section 6, and the insights obtained in Section 4.1, we have

IMS = 1− λ∗ = min
P

max
A

∑
a∈A:

δP (a,A)=0

ρ(a,A).

It is important to note that the nature of this index is unique in this literature. To

illustrate this more clearly, we now compare it with the well-known inconsistency index

of Houtman and Maks (1985), which represents the closest index to IMS. The Houtman

and Maks index measures inconsistency by the minimal amount of data that needs to

be removed in order to make the remainder of the data rationalizable by the standard

choice model. The key difference is that the Houtman-Maks index enables different

proportions of data to be removed from different menus of alternatives. Hence, using

our notation, we can write the Houtman-Maks index as

IHM = min
P

∑
A

∑
a∈A:

δP (a,A)=0

ρ(a,A).

These formulations provide a transparent comparison between the two approaches.

Both methods remove data minimally until the surviving data is rationalizable. In the

case of a maximal separation, since data must be removed at the same rate across all

menus, the index focuses on the most problematic menu. In the case of Houtman and

Maks, different proportions of data can be removed from different menus, therefore an

aggregation across menus takes place.

34See Apesteguia and Ballester (2015) for a characterization of this class and for a review of the

literature.
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Table 8. IMS versus IHM

x y z

{x, y, z} 0.25 0.3 0.4

{x, y} 0.8 0.2

{x, z} 0.4 0.6

{y, z} 0.7 0.3

Table 8 reports an example of a choice function ρ with three alternatives and with

data on all the relevant menus of alternatives. Taken from the perspective of IMS, the

data show the optimal preference to be zPxPy, while from the perspective of IHM it

is xP ′yP ′z.
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